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S U M M A R Y
Conventional traveltime seismic tomography methods with Tikhonov regularization (L2 norm)
typically produce smooth models, but these models may be inappropriate when subsurface
structure contains discontinuous features, such as faults or fractures, indicating that tomo-
graphic models should contain sharp boundaries. For this reason, we develop a double-
difference (DD) traveltime tomography method that uses a modified total-variation regulariza-
tion scheme incorporated with a priori information on interfaces to preserve sharp property
contrasts and obtain accurate inversion results. In order to solve the inversion problem, we
employ an alternating minimization method to decouple the original DD tomography problem
into two separate subproblems: a conventional DD tomography with Tikhonov regularization
and a L2 total-variation inversion. We use the LSQR linear solver to solve the Tikhonov in-
version and the split-Bregman iterative method to solve the total-variation inversion. Through
our numerical examples, we show that our new DD tomography method yields more accurate
results than the conventional DD tomography method at almost the same computational cost.

Key words: Inverse theory; Tomography; Body waves; Seismic tomography; Computational
seismology.

1 I N T RO D U C T I O N

Double-difference (DD) traveltime seismic tomography is an effi-
cient tool to obtain subsurface velocity models using body-wave
arrival time observations. Zhang & Thurber (2003, 2006) extend
the DD location method of Waldhauser & Ellsworth (2000) to si-
multaneously solve for both velocity structure and seismic event
locations. Recent developments are focused towards the inversion
of different geophysical observations because they sense the sub-
surface medium differently according to their intrinsic sensitivities
to the subsurface structure and composition. Maceira & Ammon
(2009) combine surface wave dispersion and gravity observations
into one simultaneous joint inversion to increase the resolution of
shallow structures. In order to take advantage of complimentary
data sets and improve seismic events locations, Zhang et al. (2014)
develop a joint inversion method, which incorporates body-wave
arrival times and surface wave dispersion data.

Due to limited ray path coverage and data noise, tomographic
inversions are ill-posed and underdetermined, resulting in infinite
models that are able to fit in the data to the desired degree, that
is the solution to the inverse problem is not unique. To alleviate
the ill-posedness, many numerical methods have been developed,
including regularization techniques (e.g. Aster et al. 2005), the use
of a priori information (Tarantola 1984; Delbos et al. 2006) and
preconditioning methods (Berryman 1989).

Regularization is a commonly used method to stabilize ill-posed
inverse problems. The most popular regularization method in geo-
physical inversions is L2-norm regularization or Tikhonov regular-
ization (Menke 1989; Tikhonov et al. 1995; Tarantola 2005). Also
commonly used is the sparsity-promoting regularization, including
L1-norm regularizations such as total-variation (TV) regulariza-
tion, the Huber function (Farquharson 2008; Lelièvre et al. 2009;
Loris et al. 2010; Loris & Verhoeven 2012), and compressive sens-
ing (Chiao & Kuo 2001; Hung et al. 2011). Inversion methods
using Tikhonov regularization are usually computationally more ef-
ficient than inversions using TV regularization. However, because
of the quadratic term used in the Tikhonov regularization, the in-
versions are biased towards producing smoother models, generating
unwanted artefacts and degrading sharp interfaces.

Seismic inversion algorithms using conventional TV regulariza-
tion promote sharp interfaces (Lelièvre et al. 2009; Loris et al.
2010). The disadvantage of using TV regularization is its instability
and expensive computational costs. The instability arises from the
non-differentiability of the TV functional at the origin. The coupling
of the TV functional with the data misfit term makes it difficult to
solve for gradient-based numerical optimization methods. One op-
tion to enable the differentiability of the TV functional is to add
a small smoothing parameter to the TV functional (Lelièvre et al.
2009; Loris et al. 2010). Although an inversion with a TV func-
tional and a smoothing parameter may be solvable, the convergence
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is highly sensitive to the selection of the smoothing parameter, in-
creasing the instability of the inversion. Another common approach
to bypass the non-differentiability of the TV functional is to approx-
imate the L1 norm with a quadratic approximation (Nolet 1987).
However, inversion methods based on the quadratic approximation,
such as iteratively reweighted least squares method (IRLS), can di-
verge and be unstable due to division by zero or a very small value
(Loris et al. 2010; Rodriguez 2014). A new solution has recently
emerged to the problem with sharp transitions in the model from
the use of neighbourhood algorithms allowing irregular distribution
of grid nodes. The method has shown success for inversions in-
volving receiver functions, for example, Sambridge (1999), where
the size and number of layers are automatically determined by the
samples themselves. The neighbourhood approximation is more ef-
ficient than classical L2-norm methods relying on the calculation
of the forward modelling for each sample but still suffers from the
computation cost required by methods based on L2-norm.

An alternative approach to reducing the ambiguity and improving
the inversion results is to incorporate a priori information to guide
the inversion, especially in areas of the model poorly resolved by the
data set (Tarantola 1984). Ammon & Patton (1992) show the utility
of including a priori information on spatial variations in geology by
computing the difference between minimum roughness (Laplacian)
smoothing and physiographic-based smoothing constraints when
applied to tomography using a sparse set of phase velocity mea-
surements from the western United States. Lelièvre & Oldenburg
(2009a) and Li & Oldenburg (1996, 1998) constrain the smooth-
ness of the inversion with respect to a given reference model. In
the continued work of Li & Oldenburg (2000), they further incor-
porate dip information into inversions. Also from the work of Li
& Oldenburg (2003), bound constraint is proved to be effective for
the inversion. Chasseriau & Chouteau (2003) estimate a model co-
variance matrix to normalize the data fitting. Lelièvre & Oldenburg
(2009b) include the structural orientation information from geolog-
ical data and apply this technique to unstructured meshes (Lelièvre
& Farquharson 2013). Most of these aforementioned references
incorporate the a priori information to the original set up of the
inversion. Wijns & Kowalczyk (2007) and Barbosa & Silva (2006)
develop user interactive inversion approaches, which take user input
to direct the inversion towards a geologically reasonable solution.
A good summary of incorporating a priori information—especially
from geological data—into seismic observations can be obtained in
Lelièvre (2009).

In this paper, we develop an efficient DD traveltime tomographic
technique with modified TV regularization and a priori interfaces.
We first define the modified TV regularization by introducing an
auxiliary variable and an extra regularization term to conventional
TV regularization. With the help of the auxiliary variable, we de-
couple the TV regularization term from the data misfit term, thereby
generating two subproblems: one of a conventional DD traveltime
tomography problem using Tikhonov regularization and one of L2-
TV minimization. This significantly simplifies the original DD to-
mography. To further improve the inversions, we incorporate a priori
information on interface locations, where available interface loca-
tions can be inferred from the geological data such as structural
orientations, relative positions of rock units, and changes in geo-
physical properties across offset faults (Farquharson et al. 2008;
Lelièvre 2009). The interface locations can be used as a guide to
further constrain the inversion.

We develop a computational method for solving our new DD
traveltime tomography problem with modified TV regularization
and a priori interface information. We employ different solvers

for the two decoupled subproblems. In particular, we apply the
least squares technique with QR decomposition (LSQR; Paige &
Saunders 1982a,b) to solve the first subproblem of conventional
DD traveltime tomography with Tikhonov regularization. We use
the Bregman iterative method (Osher et al. 2005; Goldstein &
Osher 2009) to solve the second L2-TV subproblem. There are
two main benefits of our computational method. First, we avoid
the use of a smoothing parameter in the TV functional, which sig-
nificantly improves the stability and robustness of our inversion
algorithm. Secondly, our algorithm converges to a true TV solution
rather than an approximated TV solution, therefore increasing the
inversion accuracy. Through an analysis of the computational cost,
we show that the extra cost of our new method is trivial compared to
the cost of conventional DD traveltime tomography with Tikhonov
regularization.

We use body-wave traveltime data generated from a synthetic
model to validate the improvement associated with our modified
TV regularization and a priori interface technique. We demonstrate
that our new method recovers velocities much more accurately and
better preserves the sharpness of interfaces than those obtained from
conventional DD traveltime tomography with Tikhonov regulariza-
tion. We also provide numerical tests to demonstrate that our new
method is a robust inversion algorithm with respect to the accuracy
and availability of interface locations.

In the following sections, we first briefly describe the fundamen-
tals of DD traveltime tomography (Section 2). We then introduce
the DD traveltime tomography with a modified TV regularization
technique incorporated with interface locations as a priori informa-
tion (Section 3). Finally, in the last section, we apply our method to
a synthetic data set and give the results (Section 4). Additionally,
we also provide the specific computational methods for solving our
new method (Section A) and analyse its cost (Section B) as two
appendices.

2 T H E O RY

In this section, we first briefly describe the fundamentals of DD
traveltime tomography and then provide the formulation of DD
traveltime tomography in both matrix and optimization forms.

2.1 DD traveltime tomography

The DD traveltime tomography method (Zhang & Thurber 2003,
2006) simultaneously inverts for both 3-D seismic velocity models
and seismic event locations. Using notation similar to Zhang &
Thurber (2006), the DD traveltime tomography can be posed as{

r i
k = (T i

k )obs − (T i
k )pred

r i
k − r j

k = (T i
k − T j

k )obs − (T i
k − T j

k )pred,
(1)

where T i
k is the arrival time from earthquake i to seismic station

k, and T j
k is the arrival time of a seismic phase from earthquake j

recorded at seismic station k. The terms with the superscript ‘obs’
indicate observations and those with the superscript ‘pred’ indicate
predicted data. r i

k quantifies the misfit between the observed and
predicted arrival times, and r i

k − r j
k is the difference between the

observed and predicted differential arrival time for earthquakes i
and j, the so-called ‘double-difference’.

A matrix formulation of eq. (1) is

[
GT

h GT
v

][ δh
δmv

]
= dT , (2)
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where GT
h is the sensitivity matrix for the hypocentre, denoted by

h; GT
v is the sensitivity matrix for the velocity model mv; and dT is

the data vector including both absolute and differential data.
To differentiate the P-arrivals from the S-arrivals, we decompose

the model parameters as δmv = [δmp δms]. Therefore, eq. (2) can
be reformulated as

[
w1G

Tp
h w1G

Tp
vp 0

w2GTs
h 0 w2GTs

vs

]⎡
⎢⎣

δh

δmp

δms

⎤
⎥⎦ =

[
w1dTp

w2dTs

]
, (3)

where G
Tp
h , GTs

h , G
Tp
vp , GTs

vs
are the sensitivity matrices of the P- and

S-arrivals with respect to hypocentre parameters (h), compressional-
wave velocities vp and shear wave velocities vs; δh are perturbations
to hypocentre locations and times, δmp and δms are perturbations
to vp and vs models; w1 and w2 are weights for the P- and S-arrival
data, respectively.

As noted by Zhang & Thurber (2006), DD tomography produces
more accurate event locations and velocity models than standard ve-
locity tomography, which only uses absolute arrival times. In order
to further improve the inversion accuracy and stability, regulariza-
tion techniques have been applied to eq. (3). In Zhang & Thurber
(2003, 2006), Tikhonov regularization is incorporated with the DD
traveltime tomography; the inversion results therein demonstrate
the importance of regularization to traveltime tomography.

2.2 DD traveltime tomography with the Tikhonov
regularization scheme

Tikhonov regularization is the most commonly used regularization
technique for inverse problems, and it has been used widely in
traveltime tomography. DD tomography using the Tikhonov regu-
larization scheme can be posed as (Zhang & Thurber 2003; Zhang
et al. 2014):⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1G
Tp
h w1G

Tp
vp 0

w2GTs
h 0 w2GTs

vs

wh Lh 0 0

0 wp Lvp 0

0 0 ws Lvs

λh I 0 0

0 λp I 0

0 0 λs I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

δh

δmp

δms

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1dTp

w2dTs

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where Lh, Lvp and Lvs are the first-order smoothing matrices for h,
mp and ms with weights of wh, wp and ws; I is the identity matrix
weighted by λh, λp and λs.

By rewriting this in an optimization form, we have an equivalent
minimization problem

E(m̃) = min
m̃

{‖G̃m̃ − d̃‖2
2 + ‖W Lm̃‖2

2 + ‖�m̃‖2
2

}
, (5)

where

G̃ =
[

w1G
Tp
h w1G

Tp
vp 0

w2GTs
h 0 w2GTs

vs

]
,

d̃ =
[

w1dTp

w2dTs

]
,

W = diag(wh, wp, ws), L = diag(Lh, Lvp , Lvs ), m̃ =
(δhT , δmT

p , δmT
s )T and � = diag(λh, λp, λs).

In eq. (5), the data misfit term ‖G̃m̃ − d̃‖2
2 measures the misfit of

the predicted data to the observed data. The second term, ‖W Lm̃‖2
2,

quantifies the roughness of the inverted model parameters, and the
third term, ‖�m̃‖2

2, is the model norm, which penalizes the magni-
tude of the inverted model parameters. The parameters in W and �

are the regularization parameters. They balance the weights between
the data misfit term of ‖G̃m̃ − d̃‖2

2 and the regularization terms of
‖W Lm̃‖2

2 and ‖�m̃‖2
2. Using incorrect values of the regularization

parameters might lead to a failure in solving eq. (5). For instance,
if both W and � are too small, minimizing eq. (5) might yield to a
solution that overfits the data, which can generate some unwanted
artefacts in the inversion. On the other hand, if the regularization
parameters are too large, the solution will be over-regularized and
will generate significantly biased inversions towards the specific
regularization imposed.

For the simplicity of derivation, we use the optimization form of
eq. (5) instead of the matrix form of eq. (4). To numerically solve
the linear system in eq. (4) or the minimization problem in eq. (5),
LSQR is used, as it is appropriate for solving large-scale sparse
ill-posed inverse problems (Paige & Saunders 1982a,b).

The L2-norm based regularization terms in eq. (5), ‖W Lm̃‖2
2

and ‖�m̃‖2
2, are usually referred to as Tikhonov regularization

(Tikhonov et al. 1995). The DD traveltime tomography with the
Tikhonov regularization scheme is effective for velocity anomalies
with quadratic interfaces. For piecewise constant velocity models,
the DD traveltime tomography with Tikhonov regularization unfor-
tunately may introduce artefacts and thus smooth the sharp inter-
faces in the velocity models (Loris et al. 2010). In order to preserve
sharp interfaces, we develop a DD traveltime tomography method
using TV regularization schemes.

3 D D T R AV E LT I M E T O M O G R A P H Y
U S I N G T O TA L - VA R I AT I O N
R E G U L A R I Z AT I O N T E C H N I Q U E S

In this section, we first provide DD traveltime tomography with a
conventional TV regularization scheme. Then we provide our new
DD traveltime tomography with a modified total-variation regular-
ization scheme and extend it by incorporating a priori interface
information.

3.1 DD traveltime tomography with a conventional
total-variation regularization scheme

The TV regularization term for a 2-D model is defined as (Rudin
et al. 1992)

‖m‖TV = ‖∇m‖1 =
∑

1≤i, j≤n

√
|(∇x m)i, j |2 + |(∇zm)i, j |2, (6)

where (∇x m)i, j = mi+1, j − mi, j and (∇zm)i, j = mi, j+1 − mi, j are
the spatial derivatives at a spatial gridpoint (i, j) in a Cartesian
coordinate system (x, z). The DD traveltime tomography with con-
ventional TV regularization can be therefore posed as

E(m̃) = min
m̃

{‖G̃m̃ − d̃‖2
2 + η‖∇m̃‖1

}
, (7)

where η is the regularization parameter and the roughness term is a
TV regularization term.
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Due to the non-differentiability of the TV regularization term at
the origin, various numerical methods have been developed to ap-
proximate the TV regularization term to enable its differentiability
at the origin. One common method is to introduce a small-valued
smoothing parameter ε such that

‖m‖TV,ε =
∑

1≤i, j≤n

√
|(∇x m)i, j |2 + |(∇zm)i, j |2 + ε, (8)

where the gradient and the Hessian can now be computed numer-
ically (Vogel 2002). Another popular approach to bypass the non-
differentiability of the TV regularization term is to approximate the
L1 norm with a quadratic approximation (Nolet 1987),

‖∇m‖1 ≈ ‖�Dm‖2
2, (9)

where the operator D is a differential operator and � =
diag([(Dx m)2 + (Dym)2]−0.5).

However, a direct numerical method of DD traveltime tomogra-
phy using the approximated TV regularization term in eq. (8) or
eq. (9) can be difficult. The cause is the numerical instability of
the approximation of the TV regularization term. Specifically, for
the methods based on a smooth approximation of TV regularization
such as lagged diffusivity fixed point iteration (Vogel 2002), the
convergence of the inversion is highly sensitive to the smoothing
parameter ε. As pointed out in Loris et al. (2010) and Rodriguez
(2014), numerical methods based on the quadratic approximation,
such as the iteratively reweighted least squares method (IRLS), can
diverge and be unstable due to division by zero or a small value. In
consideration of these, we add a modified TV regularization scheme
to overcome these issues.

3.2 DD traveltime tomography with a modified
total-variation regularization scheme

Our new DD traveltime tomography with a modified TV (MTV)
regularization scheme is given by

E(m̃, ũ) = min
m̃,ũ

{‖G̃m̃ − d̃‖2
2 + μ‖m̃ − ũ‖2

2 + η‖∇ũ‖1

}
, (10)

where an auxiliary variable ũ and an extra Tikhonov regularization
term ‖m̃ − ũ‖2

2 are added, and μ is a regularization parameter.
Equivalently, eq. (10) can be written as (Huang et al. 2008; Ye et al.
2011)

E(m̃, ũ) = min
ũ

{
min

m̃

{‖G̃m̃ − d̃‖2
2 + μ‖m̃ − ũ‖2

2

} + η‖∇ũ‖1

}
.

(11)

The regularization parameters � and μ control the trade-off between
the data misfit term and the two Tikhonov regularization terms,
while the regularization parameter η controls how much of the
interface is preserved in the inversion.

We employ an alternating-minimization algorithm to solve the
double minimization problem in eq. (11). Using an initial model
ũ(0) = m̃(0), solving eq. (11) leads to the solutions of two minimiza-
tion subproblems:

m̃(k) =argmin
m̃

{E1(m̃)}=argmin
m̃

{‖G̃m̃ − d̃‖2
2 + μ‖m̃ − ũ(k)‖2

2

}
(12)

ũ(k) = argmin
ũ

{E2(ũ)} = argmin
ũ

{‖m̃(k) − ũ‖2
2 + η ‖∇ũ‖1

}
,

(13)

for iteration step k = 1, 2, . . . . The two minimization problems in
eqs (12) and (13) have distinct physical meanings. The subproblem
in eq. (12) is similar to the problem in eq. (5). We solve for model
parameters of m̃(k) by minimizing the data misfit term with the con-
straints of a Tikhonov regularization term, where a reference model
ũ(k) is introduced as a priori information. Eq. (13) is a standard L2-
TV minimization problem (Wohlberg & Rodrı́guez 2007; Micchelli
et al. 2013), which seeks a reference model ũ(k) with a sharpened
interface with the help of the TV regularization term.

There are two major benefits of using the MTV regularization
scheme in eq. (10). The first benefit is that we reduce the complexity
of the minimization problem in eq. (7). The separation of the TV
regularization term from the data misfit term enables the solution
of two simpler minimization problems posed in eqs (12) and (13).
The second benefit is that this technique is much more robust than
solving the inversion scheme using eq. (7) with approximations in
eqs (8) or (9) (Huang et al. 2008; Ye et al. 2011). This is based
on the following reasons. Conventional optimization methods for
solving the minimization problem in eq. (7) rely on the gradient of
approximated TV functional (Nolet 1987; Vogel 2002). Numerical
instability may arise during the iteration as pointed out in Rodriguez
(2014) and Loris et al. (2010). Notice, however, that solving for u(k)

in eq. (13) is a standard L2-TV minimization. Efficient gradient-
free optimization methods exist for L2-TV minimization problems
provided with a unitary system matrix, which means the system
matrix satisfies

G̃T G̃ = G̃G̃T = I, (14)

where I is the identity matrix and ( · )T is the matrix transpose
operator. By using the properties of a unitary matrix, solving for
a L2-TV minimization relies on a shrinkage operation, which is
defined as (Elad 2010)

S(y, v) = sgn(y) · max{|y| − v, 0}, (15)

where v is the threshold value and sgn(y) takes the sign of the value
y. This can be rather efficient and robust. The system matrix of
our problem in eq. (13) is an identity matrix, which is unitary, and
therefore it can be solved efficiently and robustly. This is generally
not true for the DD traveltime tomography with conventional TV
regularization in eq. (7).

3.3 DD traveltime tomography using a priori interface
information

The minimization problem in eq. (10) seeks a subsurface model
that best fits the geophysical data. In some applications, both geo-
physical and geological data can be obtained for a region, and the
geological data can be incorporated as constraints into the inver-
sion. Subsurface structural information or the location of known
interfaces based on discontinuities in geophysical properties can be
utilized. For instance, we may know that a particular rock type lies
above another type, or we may know the location of a fault. Such
information is available in independent data sets such as gravity, sur-
face geological maps, and even topography. Lelièvre & Farquharson
(2013) and Lelièvre & Oldenburg (2009b) incorporate subsurface
structural orientation information into inversions with the help of
a rotated gradient operator, which improves the resulting inversion.
In this work, we focus on a priori interface information and impose
it as a constraint for our inversion problem. We therefore modify
the MTV regularization scheme given in eq. (10) to incorporate
interface information by adding a weighting parameter w, such
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that

E(m̃, ũ) = min
m̃,ũ

{‖G̃m̃ − d̃‖2
2 + μ‖m̃ − ũ‖2

2 + η‖w ∇ũ‖1

}
, (16)

where the weighting parameter w controls the amount of regulariza-
tion among adjacent spatial gridpoints. We set the weighting value
to be:

wi, j =
{

0 if point (i, j) is on the interface

1 if point (i, j) is off the interface
. (17)

By assigning a zero weight to the node adjacent to an interface,
that node is not penalized by the regularization. The weighting
parameter w therefore varies according to the interface location.

Analogous to eqs (11)–(13), we incorporate interface information
in eq. (16) as

E(m̃, ũ)=min
ũ

{
min

m̃

{‖G̃m̃ − d̃‖2
2 + μ‖m̃ − ũ‖2

2

} + η‖w ∇ũ‖1

}
,

(18)

which can be solved by an alternating minimization method:

m̃(k) = argmin
m̃

{E1(m̃)} = argmin
m̃

{‖G̃m̃ − d̃‖2
2 + μ‖m̃ − ũ(k)‖2

2

}
(19)

ũ(k) = argmin
ũ

{E2(ũ)} = argmin
ũ

{‖m̃(k) − ũ‖2
2 + η ‖w ∇ũ‖1

}
.

(20)

The interleaving solving of the two subproblems in eqs (19) and
(20) leads to an inversion that both improves the minimization of
the data misfit and enhances the sharpness of velocity interfaces.

In the appendices, we provide the detailed computational methods
for solving these two minimization subproblems and compare the
computational costs of solving eqs (19) and (20) in comparison to
that of conventional DD traveltime tomography.

3.4 Selection of the regularization parameters

Regularization parameters play an important role in obtaining accu-
rate inversion results. In our DD traveltime tomography technique
with MTV regularization and a priori interfaces, we have two reg-
ularization parameters that need to be appropriately selected: μ in
eq. (19) and η in eq. (20).

The regularization parameter μ is used as part of the Tikhonov
regularization. Many methods have been developed to suitably esti-
mate its value (Hansen 1998; Vogel 2002), and we use the L-curve
method (Hansen & O’Leary 1993) due to its simplicity and effi-
ciency. The L-curve is a log–log plot of the norm of a regularized
solution versus the norm of the corresponding residual norm. It is
a graphical tool for displaying the trade-off between the size of a
solution and its fit to the input data for a set of regularization pa-
rameters. The plot often results in the shape of letter L. The best
regularization parameter lies at the corner of the L shape.

The regularization parameter η is part of the L2-TV regularization
problem. Lin et al. (2010) showed that the unbiased predictive risk
estimator (UPRE) method can robustly and accurately estimate η for
the L2-TV regularization problem. The UPRE method is based on a
statistical estimator of the mean squared norm of the predictive error.
The best regularization parameter therefore yields the minimum
predictive error. We apply this method here.

4 N U M E R I C A L R E S U LT S

We use synthetic seismic data calculated for a known velocity model
to validate the improvement in results obtained using our new DD
traveltime tomography algorithm. We first provide a test to com-
pare the numerical results using Tikhonov and MTV regularization
with/without the a priori interface information. To further validate
the robustness of our DD traveltime tomography algorithm on the a
priori interface information, we provide numerical tests constrained
by incorrect or limited interface information. We also assess the ro-
bustness of our method given a sparse data coverage through a
numerical test.

In our synthetic velocity model, a pair of vertical north–south ve-
locity interfaces are added to an otherwise 1-D background velocity
model discretized in 3-D, in which velocities in the central part of
the model are reduced by 0.25 km s−1 from the background model at
all depths, and velocities outside of this central region are increased
by 0.25 km s−1 from the background model, as shown in Fig. 1. As
a result, there is a sharp gradient on the eastern and western edge
of this central region. In order to avoid the overly regular data sam-
pling, which may occur with an entirely synthetic data distribution,
we use the events and stations from actual seismicity at Kilauea
Volcano, Hawaii, recorded by the Hawaii Volcano Observatory in
2007 to construct the synthetic data set (Syracuse et al. 2010). The
actual ray path coverage for 2665 earthquakes and 116 stations are
used, as shown in Fig. 1. Gaussian noise is added to the synthetic
arrival times. The differential arrival times are obtained by directly
subtracting absolute arrival times from pairs of neighbouring events
recorded at common stations.

The velocity model is synthetic, although it represents some real-
istic situations. The sharp velocity perturbation can represent faults
or other low-velocity zones. An example of this is the Hayward
fault in California, USA (Zhang & Thurber 2003). We discretize
the velocity model using 13 grid nodes in the north-south direc-
tion (19.15◦N, 19.25–19.45◦N with 0.02◦ spacing, 19.55◦N) and 22
gridpoints in the west–east direction (155.50◦W, 155.40◦W, 155.32–
154.98◦W with 0.02◦ spacing, 154.90◦W, 154.80◦W), based on the
distribution of the earthquakes and stations. The grid nodes are be-
tween 1.0 and 15.0 km in depth, with 2 km spacing. As the depth
increases, the velocity also increases. For the ease of the illustration,
we present the shallowest six slices in our numerical results.

4.1 Comparison of numerical results using the Tikhonov
and MTV regularization schemes

We first compare the results of our DD traveltime tomogra-
phy using MTV regularization and a priori interface information
(TomoDDEMTV) with inversions using Tikhonov regularization
(TomoDDTK) and using MTV regularization (TomoDDMTV).

To implement the TomoDDTK method, we use LSQR to solve
for the linear systems in eq. (4). We implement the TomoDDMTV
method by using Algorithm 2 provided in the Appendix B, and
setting the weighting parameter w = 1.0. We implement TomoD-
DEMTV by using Algorithm 2 incorporated with the interface in-
formation. The regularization parameters are selected according to
the methods described in Section 3.4. Six iterations of simultaneous
inversions are performed for each method.

Fig. 2 shows the inverted P-wave velocity models resulting from
each method. S-wave velocities are also solved for in the inversion,
but are not discussed here. Fig. 3 shows the differences between
each recovered model and the synthetic model. We also illustrate
the ray path coverage at each depth, as indicated by the derivative
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Figure 1. Map views of the true synthetic velocity model. Black circles indicate the location of the 2665 earthquakes considered in our inversion tests. Grey
inverted triangles indicate the locations of the 116 seismic stations considered. The red lines indicate the locations of profiles discussed in the text.

weighted sum (DWS) in both Figs 2 and 3 (Thurber & Eberhart-
Phillips 1999).

These comparisons demonstrate that there are some short-
wavelength artefacts in the TomoDDTK results, and the synthetic
velocity interfaces are poorly recovered in this inversion. The To-
moDDMTV inversion reduces the inversion noise and artefacts in
comparison to the TomoDDTK results, although the velocity inter-
faces are still not very well recovered. The TomoDDEMTV results
show that this method eliminates most of the artefacts in the TomoD-
DTK and TomoDDMTV results, and the velocity interfaces are well
recovered. By including the interface information in the inversion,
the recovered model has been significantly improved in some areas
of poor ray coverage, such as the southeastern area of the model
(Fig. 2). In the absence of ray coverage where an interface is imposed

as a priori information, the TomoDDEMTV inversion favours ex-
tending the velocities recovered at neighbouring well-sampled por-
tions of the velocity interface to poorly sampled parts of the model.
To illustrate the results of each method in Fig. 4 we compare profiles
of the velocity through each recovered model at locations shown in
Fig. 1. The locations of the earthquake events are indicated in Fig. 1.
The TomoDDEMTV method yields the most accurately recovered
velocities of the three tested methods; it produces the fewest os-
cillations. To quantify the accuracy of these methods, we calculate
the inversion error (in m s−1) to the true model in Fig. 1 by

Inversion error =
√∑ ∑

(i, j)∈nodes

(
(m(i, j))pred − (m(i, j))true

)2

Number of nodes
× 1000, (21)
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Figure 2. Inversion results produced using Tikhonov regularization (left-hand column), MTV regularization (middle column), and MTV regularization with
a priori interfaces (right-hand column). The dashed black lines indicate the true locations of the interfaces. The white lines show the area that is well sampled
based on DWS values. The MTV regularization with a priori interfaces yields a more accurate result than those obtained using Tikhonov or MTV regularization
methods.
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Figure 3. Perturbations from the synthetic model for inversions using Tikhonov regularization (left-hand column), MTV regularization (middle column), and
MTV regularization with a priori interfaces (right-hand column). Blue indicates that the recovered model is faster than the synthetic model, red indicates that
it is slower than the synthetic model. The bold black lines show the area that is well sampled based on DWS values. The MTV regularization with a priori
interfaces yields the smallest differences to the synthetic model.
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Figure 4. Horizontal profiles through the inversion results shown in Fig. 2 and the synthetic model shown in Fig. 1. (a) A north–south profile at −155.16◦W
and depth = 5 km; (b) A north–south profile −155.02◦W and depth = 5 km; (c) A west–east profile at 19.37◦N and depth = 11 km; (d) A west–east profile at
19.25◦N and depth = 11 km. Of the three methods, TomoDDEMTV yields the most similar results to the synthetic model. Profile locations are shown by the
red lines in Fig. 1. The locations of the earthquakes surrounding these profiles are indicated in Fig. 1.

Table 1. Inversion errors (in m s−1) calculated using eq. (21) for methods
of TomoDDTK, TomoDDETV and TomoDDEMTV. Two different data sets
are utilized: full data sets and 50 per cent data sets. The velocity value in
the parentheses is the degradation value from the results when using the
full data set. TomoDDEMTV not only yields the smallest inversion error
but also preserves the accuracy of the inversion most consistently among all
three methods.

Methods

Data usage TomoDDTK TomoDDMTV TomoDDEMTV

Full data sets 719.1 554.0 340.3
50 per cent data sets 805.5 (86.4) 684.4 (130.4) 396.5 (56.2)

where (m(i, j))pred is the calculated model velocity at the (i, j)th node,
(m(i, j))true is the true model velocity at the (i, j)th node, and (i, j)
are the indexes in the latitude and longitude directions. We calcu-
late the sum of the absolute values of the differences between the
recovered and true models for the three inversions of TomoDDTK,
TomoDDMTV and TomoDDEMTV using eq. (21) and list them
in Table 1. This analysis quantitatively shows that TomoDDEMTV
yields a more accurate inversion result than those obtained by the
other two methods with correct a priori interfaces information.

Because the starting locations for the tomographic inversion are
the same as those used to calculate the synthetic data and the inver-
sion jointly solves for velocity and hypocentral locations, ideally
the final locations should be identical to the starting locations for a
well-recovered velocity model. For example, small relocation shifts
suggest that the inversion algorithm has no need to move the earth-
quake hypocentres to fit the data, to accommodate artefacts such
as those shown for the TomoDDTK results in Fig. 2. To obtain the
relocation error, we calculate the point-to-point Euclidean distance
between the location of the initial hypocentre and the relocated
hypocentre after inversion. Fig. 5 shows the hypocentre relocations
using the three DD traveltime tomography methods. From this fig-
ure, it is not easy to identify the best method as the cloud of points
suggest comparable relocation errors. We perform three t-tests on all
pairs possible using the three DD traveltime tomography methods.
Each t-test provides a two-tailed p-value, which indicates the proba-
bility, under the null hypothesis, to obtain a data set as extreme as the
one actually observed. The null hypothesis in the case of a t-test is a
non-significant difference between the two data sets. We obtain the
following p-values from the three tests; p-value = 6.3 × 10−17

for TomoDDTK – TomoDDMTV, p-value = 1.3 × 10−20 for
TomoDDMTV – TomoDDEMTV and p-value = 0.11 for
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Figure 5. Relocation error of the inversion results using TomoDDTK, TomoDDMTV and TomoDDEMTV. The relocation error is the point-to-point Euclidean
distance between the location of the true hypocentre and the relocated hypocentre after inversion.

TomoDDTK – TomoDDEMTV. The first two p-values are much
less than 1 per cent, and mean that there is a significant difference
between the relocations obtained using TomoDDMTV compared
to those obtained from TomoDDTK and TomoDDEMTV. This in-
dicates that the larger mean relocation error for TomoDDEMTV
is significant, suggesting that the artefacts along the sharp bound-
aries visible in Fig. 3 affect the relocation more than for the two
other methods. Although the p-value for TomoDDTK and TomoD-
DEMTV is too large to reject the null hypothesis (i.e. demonstrate
that there is a statistical difference), it must be noted that TomoD-
DEMTV is the only method that both recovers the synthetic model
(Fig. 4) well and produces small relocation errors, with a mean of
140 m. The failure of the t-test only means that these two methods
produce results that are not statistically different when using this
given data set (Box et al. 1978) and it must also be noted that earth-
quake relocations are not an exact proxy to velocity model accuracy
because some earthquakes might be poorly located.

4.2 Robustness tests

These tests demonstrate that TomoDDEMTV produces the most ac-
curate inversion results of the methods tested. The a priori interface
information plays an important role in obtaining accurate results. In
this section, we assess the robustness of TomoDDEMTV with re-
spect to the accuracy (Section 4.2.1) and availability (Section 4.2.2)

of a priori interface information. We also assess the robustness of
the methods for a case of sparse data coverage (Section 4.2.3).

4.2.1 Robustness tests on the accuracy of the interfaces

We consider three different interface weighting schemes scenarios to
test the robustness of TomoDDEMTV with respect to the accuracy
of a priori interface information (Fig. 6). Scenario 1 represents a
situation where the exact locations of the interfaces are uncertain,
and a range of nodes are given equal likelihood of being adjacent
to the interface. Within this range of nodes are the actual locations
of the interface. Scenario 2 also assumes that the exact interface
locations are unknown, but some nodes are thought to be more
likely adjacent to the interface. In Scenario 3, the location of the
interface is incorrectly identified.

Figs 7 and 8 show the inversion results and the differences be-
tween the synthetic model, respectively, for the three scenarios in
Fig. 6 using TomoDDEMTV. For Scenario 1, the velocities more
than a few nodes from the velocity interface are well recovered,
although there are some artefacts near the interfaces due to the
broadly identified interfaces. Scenario 2 produces the largest arte-
facts of the three scenarios tested. Particularly visible in Fig. 8, this
scenario produces stripes of large artefacts at the edge of the ve-
locity contrast, where the edge confidence is set to 0.5. In Scenario
3, the velocities within central low-velocity region at some depths
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Figure 6. Three types of interface weighting schemes are used to test the robustness of TomoDDEMTV when the interface location is poorly known. The
nodes at the true interface locations are plotted in red. Horizontal profiles indicated in the upper panels are plotted in the lower panels. Panels (a) and (d)
illustrate Scenario 1, where several nodes are given equal likelihood of being at the interface. Panels (b) and (e) illustrate Scenario 2, where some nodes have a
50 per cent confidence of being at the interface. Panels (c) and (f) illustrate Scenario 3, where the location of the interface is incorrectly identified.

differ slightly from the synthetic velocities, but large artefacts are
not introduced in comparison to the results of the TomoDDEMTV
inversion.

Comparing the results in Figs 7 and 8 shows that the Scenario 2
yields the most artefacts out of all three scenarios. This is due to the
fact that by weighting 0.5 confidence nodes, we actually introduce
two additional false interfaces, one to the right and one to the left
of the real interfaces. This is inconsistent with the actual data,
which causes the stripe-like artefacts. We calculate the inversion
errors for these three scenarios using eq. (21) and list them in
Table 2, which demonstrates that Scenarios 1 and 3 yield more
accurate results than Scenario 2. Based on these three types of
parametrization, we conclude that although some artefacts can be
generated due to inaccurately identified interfaces, the results of the
TomoDDEMTV inversion are still much more accurate than those
results obtained using the conventional DD traveltime tomography
method of TomoDDTK. If there is some uncertainty in the actual
location of a velocity interface, it is preferable to assume a broader
interface (Scenario 1) or a narrow, possibly incorrect, interface
(Scenario 3), rather than assign a lower confidence to some interface
locations (Scenario 2).

4.2.2 Robustness tests of the availability of interfaces

In some real problems, an a priori interface based on geological data
may be available only for near-surface layers. We test this scenario
using TomoDDEMTV by incorporating a priori interface infor-
mation only for layers 5 km depth and shallower (Figs 9 and 10).
For the shallow layers where a priori interface information is in-
cluded, the results for these layers are as accurate as the results of
the inversion where a priori interface information is applied for
all depths (Fig. 2). For the deeper layers where no a priori inter-

face information is included, the accuracy is equivalent to that of
the TomoDDMTV results (Fig. 2). The overall results of this sce-
nario when using TomoDDEMTV are still much more accurate
than those obtained using conventional DD traveltime tomography
method, even when limited a priori information is available.

4.2.3 Robustness tests on the sparse data sets

We also test the robustness of our method with respect to data set
sparsity. To setup the problem, we randomly eliminate 50 per cent
of the earthquake events and stations from those in Fig. 1. We com-
pare the inversions using all the three methods and show them in
Fig. 11. Their differences to the true velocity model is provided in
Fig. 12. As we can visually observe, the inversion result of TomoD-
DEMTV is comparable to that using the full data sets in Fig. 2, while
TomoDDTK and TomoDDMTV result in significant artefacts. Us-
ing eq. (21), we calculate the inversion errors for the three methods
using the degraded data sets and report them in Table 1. Our method
yields the smallest inversion error (396.5 m s−1) out of all three
methods. Comparison to the results obtained using the full data set,
shown in Fig. 2, the results using both inversions TomoDDTK and
TomoDDMTV have degraded significantly, while TomoDDEMTV
consistently recovers the velocity model the most accurately. There-
fore, given sparse data sets, TomoDDEMTV is robust and superior
to the other two methods of TomoDDTK and TomoDDMTV in
providing a consistent inversion quality.

5 C O N C LU S I O N S

We have developed a DD traveltime tomography method using
modified total-variation regularization incorporated with a priori
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Figure 7. Results for the three scenarios shown in Fig. 6 using TomoDDEMTV: Scenario 1 (left-hand column), Scenario 2 (middle column) and Scenario 3
(right-hand column). The white lines show the area that is well sampled based on DWS values.
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Figure 8. Perturbations from the synthetic model for the three scenarios shown in Fig. 6 using TomoDDEMTV: Scenario 1 (left-hand column), Scenario 2
(middle column), and Scenario 3 (right-hand column). The bold black lines show the area that is well sampled based on DWS values.
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Table 2. Inversion errors (in m s−1) calculated using eq.
(21) for three different scenarios depicted in Fig. 6. Full
data sets are utilized. Scenarios 1 and 3 yield better results
than Scenario 2.

Scenarios

Data usage Scenario 1 Scenario 2 Scenario 3

Full data sets 414.3 543.0 401.1

interface information. We employ an alternating minimization al-
gorithm to decouple the tomography into two subproblems that can
be solved much more efficiently than solving the original tomogra-
phy problem. To solve these two subproblems, we use LSQR and

split-Bregman iterative solvers. The modified total variation reg-
ularization avoids the use of a smoothing parameter or quadratic
approximation to the total variation functional, enhancing the ro-
bustness of our inversion method. The incorporation of a priori
interface information further improves the stability and accuracy
of the inversion without adding significant additional cost com-
pared to a classical Tikhonov regularization. Our numerical ex-
amples demonstrate that this new tomography method yields ac-
curate velocity results and is robust even when constrained by
inaccurate a priori information. We also demonstrate that our
method can be robust when provided with sparse data sets. This
can be beneficial for certain real situations when earthquake events
and/or stations are limited. However, our method relies on more
regularization parameters than those used in the conventional DD
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Figure 9. Results of an inversion using TomoDDEMTV where a priori information on interface location is only included for layers at 5 km depth and shallower.
The white lines show the area that is well sampled based on DWS values.
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Figure 10. Perturbations from the synthetic model for an inversion using TomoDDEMTV where a priori information on interface location is only included
for layers at 5 km depth and shallower. The bold black lines show the area that is well sampled based on DWS values.

traveltime tomography with Tikhonov regularization, which can add
computational costs to obtain an accurate inversion. Our method can
introduce some artefacts due to the false a priori interface infor-
mation, which might add some difficulty to interpretation of the
inversion results.

In general, our method has a strong potential to improve the
results of inversions of actual seismic data for real-world problems.
In future work, we will explore the related computational issues
such as convergence rate and behaviour, memory usage, etc. We
would also like to consider the incorporation of additional a priori
information into our current method and evaluate its performance.

More over, we will apply our method to a real data set and report
results in a future paper.
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anonymous reviewer for their valuable comments and suggestions.

 by guest on M
arch 10, 2015

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Double-difference traveltime tomography 589

19.2˚

19.4˚

1 km

19.2˚

19.4˚

3 km

19.2˚

19.4˚

5 km

19.2˚

19.4˚

7 km

19.2˚

19.4˚

9 km

-155.4˚ -155.2˚ -155˚ -154.8˚

19.2˚

19.4˚

11 km

1 km

3 km

5 km

7 km

9 km

-155.4˚ -155.2˚ -155˚ -154.8˚

11 km

19.2˚

19.4˚

1 km

19.2˚

19.4˚

3 km

19.2˚

19.4˚

5 km

19.2˚

19.4˚

7 km

19.2˚

19.4˚

9 km

-155.4˚ -155.2˚ -155˚ -154.8˚

19.2˚

19.4˚

11 km

4 5 6 7

Vp, km/s

TomoDDTK TomoDDMTV TomoDDEMTV

Figure 11. Inversion results produced using Tikhonov regularization (left-hand column), MTV regularization (middle column), and MTV regularization with
a priori interfaces (right-hand column). The data sets consists of 50 per cent of the total earthquakes and stations shown in Fig. 1. The white lines show the
area that is well sampled based on DWS values. The inversion result of TomoDDEMTV is comparable to that using the full data set in Fig. 2, while significant
artefacts occur in the results using TomoDDTK and TomoDDMTV.
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Figure 12. Perturbations from the synthetic model for inversions using Tikhonov regularization (left-hand column), MTV regularization (middle column), and
MTV regularization with a priori interfaces (right-hand column). Blue indicates that the recovered model is faster than the synthetic model, red indicates that
it is slower than the synthetic model. The data sets consists of 50 per cent of the total earthquakes and stations shown in Fig. 1. The bold black lines show the
area that is well sampled based on DWS values. The inversion result of TomoDDEMTV is comparable to that using the full data set in Fig. 2, while significant
artefacts occur in the results using TomoDDTK and TomoDDMTV.
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Lelièvre, P.G. & Oldenburg, D.W., 2009b. A comprehensive study of includ-
ing structural orientation information in geophysical inversions, Geophys.
J. Int., 178(2), 623–637.
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A P P E N D I X A : C O M P U TAT I O NA L
M E T H O D S

Our computational method for solving the optimization in eq. (18)
is composed of two parts: solving the subproblem in eq. (19) and
solving the subproblem in eq. (20).

Similar to the original DD traveltime tomography with Tikhonov
regularization in eq. (4), eq. (19) can be equivalently written as:[

G̃
√

μ I

]
m̃ =

[
d̃

√
μ ũ(k)

]
. (A1)

Hence, we employ LSQR (Paige & Saunders 1982a,b) to solve eq.
(A1) due to its stability and efficiency in solving large scale ill-posed
linear systems in comparison to other linear solvers.

To solve eq. (20), we employ the split-Bregman iterative method
(Goldstein & Osher 2009), due to its robustness. The details of the
split-Bregman iterative method are described in Section A1.

We begin the iteration with an initial model ũ(0) = m̃(0). By solv-
ing the two subproblems in eqs (19) and (20), respectively, we are
able to generate a sequence of iterations

ũ(0) → m̃(1) → ũ(1) → m̃(2) → ũ(2)

→ m̃(3) → ũ(3) → · · · → m̃(k) → ũ(k) → · · · .
that converges on the inversion result.

A1 Split-Bregman method for solving the second
subproblem

Methods based on the Bregman distance (Osher et al. 2005; Yin
et al. 2008; Goldstein & Osher 2009) are reliable approaches for
solving the L2-TV minimization problem in eq. (20). The definition
of the Bregman distance is given as (Bregman 1967):

D p
E2

(m1, m2) = E2(m2) − [E2(m1) + 〈p, m2 − m1〉], (A2)

where E2 is defined in eq. (20). 〈·, · 〉 is an inner product operator
and p is the subgradient of E2 at m2. Fig. A1 provides a geomet-
ric description of the Bregman distance between m2 and m1. We
observe that the Bregman distance is the vertical distance at m2

between the original curve E2 and the line tangent to the origi-
nal curve at m1. Two important properties can be found from the
definition of the Bregman distance in eq. (A2) (Bregman 1967).
First, the Bregman distance is not symmetric, so it is not a distance
in the usual sense. Secondly, the Bregman distance measures the
closeness of two points in the sense that D p

E2
(m1, m2) ≥ 0, and

D p
E2

(m1, m2) ≥ D p
E2

(m1, m3) for m3 on the line segment between
m1 and m2. One of the main benefits of using the Bregman distance
is that the minimization of D p

E2
(m1, m2) does not penalize a model

containing sharp interfaces. In the work of Osher et al. (2005), Yin
et al. (2008) and Goldstein & Osher (2009), the combination of the
Bregman distance with the TV term is shown to be superior to using
the conventional TV term, and the split-Bregman iterative method

D   (m1,m2)
p

E2

m1

E2(m)

m

  E2

m2

Figure A1. The Bregman distance D p
E2

between two points m1 and m2 of
the misfit function E2(m).

is also shown to converge to an accurate solution. Therefore, DD
traveltime tomography with MTV regularization and a priori in-
terfaces using the split-Bregman iterative method yields a model
containing fewer artefacts and sharper interfaces than one obtained
using a conventional TV regularization term.

To employ the split-Bregman iterative method in solving our
problem, we first introduce two auxiliary variables, w̃x ≈ ∇x ũ and
w̃z ≈ ∇z ũ, to reformulate eq. (20) as an equivalent minimization
problem:

min
ũ,w̃x ,w̃z

{∥∥ũ − m̃(k)
∥∥2

2
+ λ2 ‖w ∇ũ‖1 + α ‖w̃x − ∇x ũ‖2

2

+ α ‖w̃z − ∇z ũ‖2
2

}
, (A3)

where the regularization parameter α = 2λ2 following Goldstein &
Osher (2009). Applying the Bregman distance to eq. (A3) leads to

min
ũ,w̃x ,w̃z

{ ∥∥ũ − m̃(k)
∥∥2

2
+ λ2 ‖w ∇ũ‖1 + α

∥∥w̃x − ∇x ũ − b̃(k)
x

∥∥2

2

+ α
∥∥w̃z − ∇z ũ − b̃(k)

z

∥∥2

2

}
, (A4)

where b̃(k+1)
x = b̃(k)

x + (∇x ũ(k+1) − w̃(k+1)
x ) and b̃(k+1)

z = b̃(k)
z +

(∇z ũ(k+1) − w̃(k+1)
z ), with b̃(0)

x = b̃(0)
z = 0.

We employ an alternating minimization algorithm to solve the
minimization problem in eq. (A4), that is to solve the following two
subproblems:

min
ũ

{ ∥∥ũ − m̃(k)
∥∥2

2
+ α

∥∥w̃(k)
x − ∇x ũ − b̃(k)

x

∥∥2

2

+ α
∥∥w̃(k)

z − ∇z ũ − b̃(k)
z

∥∥2

2

}
, (A5)

min
w̃x ,w̃z

{
λ2 ‖w ∇ũ‖1 + α

∥∥w̃x − ∇x ũ − b̃(k)
x

∥∥2

2

+ α
∥∥w̃z − ∇z ũ − b̃(k)

z

∥∥2

2

}
. (A6)

Eq. (A5) satisfies the optimality condition

(I − α)ũ(k+1) = m̃(k) + α∇T
x

(
w̃(k)

x − b̃(k)
x

) + α∇T
z

(
w̃(k)

z − b̃(k)
z

)
,

(A7)
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and the solution of eq. (A5) is obtained using the Gauss-Seidel
iterative method:

ũ(k)
i, j = α

1 + 4α

(
ũ(k)

i+1, j + ũ(k)
i−1, j + ũ(k)

i, j+1 + ũ(k)
i, j−1 + w̃(k)

x,i−1, j − w̃(k)
x,i, j

+ w̃(k)
z,i, j−1 − w̃(k)

z,i, j − b̃(k)
x,i−1, j + b̃(k)

x,i, j − b̃(k)
z,i, j−1 + b̃(k)

y,i, j

)
+ 1

1 + 4α
m̃(k)

i, j . (A8)

Eq. (A6) is solved explicitly using a generalized shrinkage for-
mula (Wang et al. 2008)

w̃(k+1)
x = max

(
q̃(k) − λ2

2α
, 0

)
w ∇x ũ(k) + b̃(k)

x

q̃(k)
, (A9)

and

w̃(k+1)
z = max

(
q̃(k) − λ2

2α
, 0

)
w ∇z ũ(k) + b̃(k)

z

q̃(k)
, (A10)

where q̃(k) =
√

|w ∇x ũ(k) + b̃(k)
x |2 + |w ∇z ũ(k) + b̃(k)

z |2.
The numerical algorithm for solving eq. (20) using the split-

Bregman iterative method is summarized in Algorithm 1.

Algorithm 1 Split-Bregman iterative method

Input: TOL
Output: u(k)

1: Initialize j = 0, w̃(0)
x = w̃(0)

z = b̃(0)
x = b̃(0)

z = 0;
2: while ||ũ( j) − ũ( j−1)|| > TOL do
3: Solve eq. (A5) according to eq. (A8);
4: Solve eq. (A6) according to eq. (A9) and eq. (A10);

5: Update b̃( j+1)
x = b̃( j)

x + (∇x
˜̃u

( j+1) − w̃( j+1)
x );

6: Update b̃( j+1)
z = b̃( j)

z + (∇z
˜̃u

( j+1) − w̃( j+1)
z );

7: j ← j + 1;
8: end while

In comparison, we discuss the direct application of the split-
Bregman iterative method to DD traveltime tomography problem,
which leads to two subproblems given by:

m̃(k) = argmin
m

{ ∥∥G̃m̃ − d̃
∥∥2

2
+ λ1

∥∥wx − ∇m̃(k) − b(k)
x

∥∥2

2

+ λ1

∥∥wz − ∇m̃(k) − b(k)
z

∥∥2

2

}
(A11)

(
wx

(k), wz
(k)

) = argmin
wx,wz

{
λ1

∥∥wx − ∇m̃(k) − b(k)
x

∥∥2

2

+ λ1

∥∥wz − ∇m̃(k) − b(k)
z

∥∥2

2
+ λ2 ‖m̃‖TV

}
. (A12)

Eq. (A11) solves DD traveltime tomography with two regularization
terms, and eq. (A12) solves a L2-TV minimization problem. The
regularization scheme used in eq. (A11) is different from that in
eq. (19) of our method with the MTV regularization scheme.
Eq. (A11) uses the spatial derivatives of the model parameters as
the prior. Calculations of the spatial derivatives can be inaccurate
because of numerical noise and artefacts during inversion, which
could lead to an unstable minimization subproblem eq. (A11). By
contrast, eq. (19) employs the model inversion result of the previ-
ous iteration step u(k−1) as the a priori information, yielding a more
robust inversion algorithm than that based on eq. (A11).

A P P E N D I X B : C O M P U TAT I O NA L C O S T
A NA LY S I S

We provide the approximate computational cost of our algorithm
for solving the optimization in eq. (18). We first summarize the op-
timization methods for solving our new DD traveltime tomography
method as in Algorithm 2.

Algorithm 2 Computational methods for solving eq. (18)

Input: ũ(0), TOL
Output: m̃(k)

1: Initialize k = 0;
2: while ||m̃(k) − m̃(k−1)|| > TOL do
3: Solve eq. (19) for m̃(k) using LSQR method;
4: Solve eq. (20) for ũ(k) according to Algorithm 1;
5: k ← k + 1;
6: end while

From Algorithm 2, we can observe that the overall computa-
tional cost consists of two portions: solving eq. (19) in Step 3
and solving eq. (20) in Step 4. Because the operations in Algo-
rithms 1 and 2 are either matrix or vector operations, we cal-
culate the floating point operations (FLOPS) and use the big
O notation to approximate the computational cost (Golub &
Van Loan 1996).

To set up the problem, we assume that the number of ray
paths is p and the number of the grid nodes to be inverted is
q. The size of model parameters is m̃ ∈ �q×1, and the sensi-
tivity matrix G̃ ∈ �p×q . Hence, the left-hand side of the sys-
tem matrix in eq. (A1) is of size (p + q) × q. The computa-
tional cost of employing the LSQR algorithm to solve the lin-
ear systems in eq. (A1) is dominated by the Lanczos bidiagonal-
ization, which is composed of two matrix–vector multiplications
(Björck 1996):

CLSQR = 2((p + q) · q) + k0 · (4((p + q) · q)

+ 2(p + q) · 6q) (B1)

≈ k0 · O(p · q + q2), (B2)

where k0 is the number of iterations used in the LSQR algorithm.
Eq. (B1) is the exact cost in FLOPS. The first term in eq. (B1)
corresponds to the initial steps in the LSQR algorithm, and the
second term is the cost when k0 bidiagonalization is implemented.
The cost provided by eq. (B1) is determined by the number of
LSQR iterations k0 and the cost of the matrix–vector multiplications
(p + q) · q.

In numerical linear algebra, basic linear algebra subprograms
(BLAS) are divided into three levels. Level-1 operations involve
an amount of data and arithmetic that is linear in the dimension of
the operation, and those operations involving a quadratic amount
of data and a quadratic amount of work are Level-2 operations
(Golub & Van Loan 1996). Following this notation, vector dot
product and SAXPY operations are examples of BLAS Level-1
operations (BLAS 1) and the matrix–vector multiplication is the
BLAS Level-2 operation (BLAS 2). Considering only the BLAS 2
operations of matrix vector multiplications and ignoring all BLAS
1 operations of vector dot product and SAXPY operations, we ob-
tain the approximate computational cost in eq. (B2) using the big
O notation.

The computational cost of Algorithm 1 is relatively straight-
forward. It includes the cost from the Gauss–Seidel iteration in
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eq. (A8), and the shrinkage formula in eqs (A9) and (A10). We
have

CSB ≈ k1 · O(q), (B3)

where k1 is the number of iterations used in the split-Bregman
iterative method. Therefore, the overall computational cost of
Algorithm 2 is

COverall = CLSQR + CSB ≈ k2 · [
k0 · O(p · q + q2) + k1 · O(q)

]
,

(B4)

where k2 is the total number of iterations used in Algorithm 2.

In comparison, the overall computational cost of solving the DD
traveltime tomography problem with conventional Tikhonov regu-
larization as in eq. (4) is

CConvension = k2 · [
k0 · O(p · q + q2)

]
. (B5)

Comparing the overall cost of using conventional DD traveltime
tomography in eq. (B5) to the cost of our new inversion method as
in eq. (B4), the costs only differ in the lower-order term of k1 · O(q).
We therefore conclude that the added cost of using our new method
is trivial.

 by guest on M
arch 10, 2015

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/

