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S U M M A R Y
We have developed a wavelet-based double-difference (DD) seismic tomography method. In-
stead of solving for the velocity model itself, the new method inverts for its wavelet coefficients
in the wavelet domain. This method takes advantage of the multiscale property of the wavelet
representation and solves the model at different scales. A sparsity constraint is applied to the
inversion system to make the set of wavelet coefficients of the velocity model sparse. This
considers the fact that the background velocity variation is generally smooth and the inversion
proceeds in a multiscale way with larger scale features resolved first and finer scale features
resolved later, which naturally leads to the sparsity of the wavelet coefficients of the model.
The method is both data- and model-adaptive because wavelet coefficients are non-zero in the
regions where the model changes abruptly when they are well sampled by ray paths and the
model is resolved from coarser to finer scales. An iteratively reweighted least squares procedure
is adopted to solve the inversion system with the sparsity regularization. A synthetic test for
an idealized fault zone model shows that the new method can better resolve the discontinuous
boundaries of the fault zone and the velocity values are also better recovered compared to the
original DD tomography method that uses the first-order Tikhonov regularization.
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1 I N T RO D U C T I O N

For seismic tomography, the velocity model is generally
parametrized into regular 3-D cells or grid nodes (Aki & Lee 1976;
Thurber 1983). However, due to non-uniform station geometry, un-
even distribution of seismic sources, missing data and ray bending,
the ray coverage is generally highly uneven. Ideally, the distribution
of inversion cells or nodes should adaptively match with the resolv-
ing power of the data in such a way that the cells/nodes are denser
where the ray coverage is better and more sparse in the regions
where few rays pass through. However, because of the restriction
of the regular cell or grid spacing, it is difficult to parametrize the
model to be adaptive with the uneven ray distribution. As a result,
the inversion problem becomes relatively ill-conditioned and var-
ious regularization methods such as Tikhonov regularization need
to be applied to stabilize the inversion (Aster et al. 2013). How-
ever, these regularization methods to some degree deteriorate the
model resolution and small-scale features in the model are generally
smeared out even in the region where the ray coverage is good.

To partly account for the mismatch between the regular inversion
nodes and uneven ray distribution, Zhou (2003) proposed a multi-
scale traveltime tomography method that sequentially uses multiple
grids with different grid spacing. The coarser grid inversion result
serves as the starting model for the finer grid inversion. In this

way, different scales of velocity features may be better recovered.
However, for the fine grid inversion, strong regularization needs to
be applied to make the inversion well conditioned. To better tackle
this issue, an adaptive seismic tomography method is preferred in
which the cells or nodes are irregularly distributed to match with
the uneven ray distribution (Abers & Roecker 1991; Vesnaver 1996;
Curtis & Snieder 1997; Sambridge & Gudmundsson 1998; Böhm
et al. 2000; Spakman & Bijwaard 2001; Zhang & Thurber 2005).
As shown by Zhang & Thurber (2005), the adaptive-mesh double-
difference (DD) seismic tomography method based on tetrahedral
or Voronoi diagrams can better resolve the finer scale structure of
the velocity model.

For the adaptive seismic tomography methods, the goal is to
match the ray distribution to the density of the inversion cells or
nodes. Therefore, they are purely data-adaptive and do not consider
whether the model parametrization is appropriate for the model
itself. Because of the inherent multiscale nature of the wavelet rep-
resentation (Daubechies 1992), wavelet-based multiscale tomogra-
phy method has been proposed to compensate for the mismatch
problem of uneven ray distribution and regular cells/nodes (e.g.
Chiao & Kuo 2001; Chiao & Liang 2003; Loris et al. 2007;
Delost et al. 2008; Hung et al. 2011; Simons et al. 2011).
In the wavelet-based seismic tomography methods, the wavelet
coefficients of the model, instead of the model itself, are the
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parameters to be solved for. This provides a natural way to resolve
the model at different scales. Compared to purely data-adaptive
seismic tomography methods, the wavelet-based methods adapt the
inversion cells/nodes implicitly according to the data distribution
and the model complexity. If a certain part of the model is smooth,
only sparse cells/nodes are required to represent it and thus only
wavelet coefficients at large scales are significant and kept in the
inversion. On the other hand, if a certain part of the model has
small-scale features with good ray coverage, more wavelet coef-
ficients are required to sufficiently represent the model. However,
for regions with small-scale features but sparse ray path cover-
age, wavelet-based tomography methods still cannot resolve fine
features.

Previous wavelet-based seismic tomography methods used dif-
ferent wavelet families, different strategies of realizing the wavelet
transform, and different regularization tools, and also solved dif-
ferent scales of problems. Chiao & Kuo (2001) and Chiao &
Liang (2003) were the first to propose wavelet-based multireso-
lution parametrization for geophysical inverse problems. In their
case, the model components are resolved hierarchically at differ-
ent scales embedded within the wavelet representation and thus
there is no need to invoke additional smoothness regularization
in addition to the damping regularization. Following this strategy,
Hung et al. (2010, 2011) proposed a wavelet-based finite-frequency
teleseismic tomography method to image the velocity structure of
the central Tibet. The second-generation wavelet transform by the
lifting scheme of Sweldens (1996) has been adopted by Chiao &
Kuo (2001), Chiao & Liang (2003) and Hung et al. (2010, 2011).
Delost et al. (2008) also used the second-generation wavelet trans-
form for the first-arrival traveltime tomography by designing a bit
mask operator to only invert for the wavelet coefficients in specific
areas where the resolution is high.

For the wavelet-based seismic tomography methods of Chiao &
Kuo (2001), Chiao & Liang (2003) and Hung et al. (2010, 2011),
the model is solved in the wavelet domain and only damping is
applied to regularize the inversion. This is equivalent to minimizing
the L2 norm of the model wavelet coefficients. In comparison, Loris
et al. (2007) regularized the wavelet-based teleseismic tomogra-
phy by minimizing the L1-norm of the model wavelet coefficients
to make them sparse. This is based on the fact that a few non-zero
coefficients are enough to represent model parameters which is gen-
erally smooth with some fine scale features. Simons et al. (2011)
also proposed using a class of spherical wavelet basis for tomo-
graphic inversion of global seismic data. The inversion scheme was
formulated to minimize the L2 norm of the data misfit and the L1

norm of the model wavelet coefficients. The sparsity-constrained
inversion has been shown to be effective to better resolve the model
if it is sparse in nature (Aster et al. 2013). It allows us to resolve
sharp discontinuities and small scale features without the a pri-
ori smoothing regularization term, which is more subjective and
may smear out the fine scale features in the regions with good ray
path coverage. For example, Zhu & Bamler (2010) used a compres-
sive sensing approach in synthetic aperture radar tomography and
obtained a super-resolution image with highly accurate point lo-
calization. In this study, we essentially follow the strategy of Loris
et al. (2007) to solve the DD tomography problem of Zhang &
Thurber (2003) in the wavelet domain but use a different strategy
for solving the sparse wavelet coefficients, which uses an iteratively
reweighted least-squares (IRLS) method to obtain a sparse solution
instead using the soft thresholding method. The code realizing the
new method is tested using the same synthetic data set as Zhang &
Thurber (2003).

2 M E T H O D O L O G Y

For the DD seismic tomography method, in addition to absolute
arrival times, differential arrival times from event pairs observed on
common stations are also used (Zhang & Thurber 2003):
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(1)

In the above equations, r i
k is the arrival time residual for event i

and station k, δτ i is the origin time perturbation for event i, �xi
l (l =

1, 2, 3) are the location perturbations in three coordinate directions,
δun is the slowness perturbation and sik

n and s jk
n are the weighted

ray path segment length with respect to node n for ray paths from
event i and j to station k, respectively. In the matrix form, for the
absolute data it can be written as:

A�X + C�M = �T, (2)

where A and C are the sensitivity matrix to the event location
and slowness parameters, respectively, �X is the vector including
event locations and origin times, �M is the slowness perturbation
parameters and �T is the data misfit vector. For the differential data,
we can simply apply a difference operator Q to eq. (2) as follows
(Zhang & Thurber 2006):

QA�X + QC�M = Q�T. (3)

For a 3-D wavelet transform represented by a matrix W
(Daubechies 1992), we can rewrite eq. (2) as:

A�X + CW−1W�M = �T. (4)

Eq. (3) can be also rewritten as:

QA�X + QCW−1W�M = Q�T. (5)

Then we can combine eqs (4) and (5) to a matrix form:

G̃m̃ = d, (6)

where G̃ =
[

A CW−1

QA QCW−1

]
, m̃ =

[
�X

W�M

]
and W−1 represents the in-

verse wavelet transform. We can write W−1 = WT if we use orthog-
onal wavelet basis or W−1 = W̃T if we use bi-orthogonal wavelet
basis, where W̃ is the matrix representing the wavelet transform
using the dual wavelet basis. Note that we just apply the wavelet
transform to the slowness part of the sensitivity matrix and leave
out the location and origin time parameters. We use the lifting
scheme to achieve the wavelet transform, which decomposes a cer-
tain signal into approximation coefficients and detail coefficients at
different scales (Sweldens 1996). The approximation coefficients
are obtained by representing the signal in the space formed by the
scaling functions at different scales, which mostly reflect the smooth
component of the signal. In comparison, the detail coefficients are
obtained by representing the signal in the space formed by wavelet
functions at different scales, which mostly reflect the small-scale
features of the signal. The inverse problem is now recast as first
seeking the wavelet coefficients of the model and then using the in-
verse wavelet transform matrix W−1 to get the model on a discrete
spatial grid.
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Because the linearized equation Gm = d for seismic tomogra-
phy is generally ill conditioned, some regularization methods are
required to make the inversion stable. Zeroth-order or higher-order
Tikhonov regularization methods can be applied to make the model
either not far from an a priori model or smooth. For higher-order
Tikhonov regularization methods, they may not be appropriate in the
case that the model has discontinuities such as faults. For a model
that is smooth at large scales but varies rapidly in some regions, its
representation is generally sparse in the wavelet domain meaning
that only the approximation coefficients and a few non-zero detail
coefficients are sufficient to recover the main features of the model
(Daubechies 1992). Following Loris et al. (2007), instead of using
the Tikhonov regularization methods, we apply the sparsity con-
straint to the model wavelet coefficients. Different from Loris et al.
(2007), we use the IRLS to solve the inversion system in the wavelet
domain to obtain the sparse solution of the model wavelet coeffi-
cients. Instead of applying the wavelet transform to the teleseismic
tomography problem (Simons et al. 2011), we apply it to the local
scale DD tomography problem.

The L0 norm, which is defined as the number of non-zero coeffi-
cients, can be used to measure the sparsity of the solution. However,
applying the L0 norm constraint to the inversion model is extremely
computational prohibitive since the resulting cost function becomes
non-convex (Aster et al. 2013). Here we used the L1 norm instead,
which has been shown to also produce a sparse solution (Candès
et al. 2006; Donoho 2006). The inverse problem is to seek a solution
to satisfy G̃m̃ = d with a minimal ||m̃||1, leading to a minimization
problem as follows,

min||G̃m̃ − d||22 + λ||m̃||1, (7)

where λ is the Lagrange multiplier that is used to balance between
the data misfit and the sparsity of the solution. It can be determined
by the discrepancy principle (Scherzer 1993) if we know the noise
level in the data. However, in the real case of seismic tomography,
we often do not know the data noise level, thus we generally use the
L-curve method or the generalized cross-validation method to find
the optimum λ (Aster et al. 2013). In comparison, this is a convex
problem and we can solve it efficiently.

It is well known that the L1 norm regularization always leads
to a sparse solution and for some very large classes of G̃, the L1

minimizer leads to a unique solution when sufficiently sparse so-
lutions exist (Candès et al. 2006; Donoho 2006). Eq. (7) can be
solved by the IRLS algorithm (Scales et al. 1988), in which the
L1-norm functional in (7) is replaced by a weighted L2-norm func-
tional, and the weights are computed iteratively from the previous
model parameters m̃. For the IRLS algorithm, eq. (7) is recast to
solve the following least squares problem (Aster et al. 2013):

min

∥∥∥∥∥
[

G̃√
λ

2

√
Ẇ

]
m̃−

[
d
0

]∥∥∥∥∥
2

, (8)

with

Ẇi,i =
{

1/ |m̃i | |m̃i | ≥ ξ

1/ξ |m̃i | < ξ
, (9)

where ξ is a tolerance parameter to avoid the case of division by
zero. The above algorithm essentially results in a first-order approx-
imation to the L1 norm objective function. In the IRLS procedure,
because the matrix G̃ consists of elements corresponding to dif-
ferent physical entities related to source parameters (location and
origin time) and wavelet coefficients of the model slowness param-

eters, the column scaling is applied to mitigate this issue, similar to
the original DD tomography method of Zhang & Thurber (2003).

For realizing wavelet-based DD tomography with sparsity regu-
larization using eq. (8), it involves two levels of iterations. The first
level of iterations is based on the linearization of non-linear inverse
problem by updating the model iteratively for solving (7). For each
first level iteration, the second level of iterations is required in the
IRLS procedure for solving (8). We first solve (8) by setting Ẇ as
the identity matrix, then update Ẇ and iterate a few times to get
a sparse solution. During the second level of iterations, the value
of λ is fixed. In our study, we choose ξ to be 10−6 considering the
machine accuracy for single precision floating-point number.

In practice, at different stages of inversion we use different thresh-
old values to zero out small or nearly zero wavelet coefficients of
the sensitivity matrix in the wavelet domain. This procedure keeps
the main features of the sensitivity matrix but makes the inversion
more stable and data adaptive, as will be shown in the next sec-
tion. We use relatively larger thresholds for the first few iterations
and then smaller thresholds for later iterations. This is equivalent
to determining the model at coarser scales at the beginning and
then gradually at finer scales. This process naturally results in a
model whose wavelet coefficients are mostly zeros except for the
region where the model varies discontinuously. For the area with
sparse ray coverage, most wavelet coefficients of the model param-
eters will be zero due to the sparsity constraint, so only large-scale
features are recovered. For the region with dense ray coverage, the
detail wavelet coefficients could have more non-zero values if the
model has small-scale features associated with them. Therefore the
wavelet-based seismic tomography method is inherently multiscale
and data adaptive.

3 S Y N T H E T I C T E S T

To validate the effectiveness of the wavelet-based DD tomography
method, we test it with the same synthetic data set as Zhang &
Thurber (2003). The synthetic data set was constructed based on an
idealized model of the velocity structure of the San Andreas fault in
central California (Kissling et al. 1994). To the west of the ‘fault’
(X < 0), the velocity is constant (6 km s−1); to the east, there is a
very sharp gradient into a low-velocity zone of 4 km s−1 from X = 1
to 5 km, a sharp gradient to 5 km s−1 at X = 6 km, and then a linear
increase from 5 to 6 km s−1 in the region between 6 and 38 km
(Fig. 1a). The events and stations used to construct the synthetic
data set are from the actual seismicity and U.S. Geological Survey
stations in the Loma Prieta region (Fig. 2). Gaussian random noise
with zero mean and a standard deviation of 0.04 s was added to the
true arrival times. In addition, a constant noise term was also added
to the arrivals at each station from a uniform distribution between
−0.3 and 0.3 s. This was to simulate the case that the systematic
errors (model errors and pick bias) associated with the arrival times
are larger than the random ones. The differential arrival times are
constructed by directly subtracting absolute arrival times for event
pairs at common stations.

In Zhang & Thurber (2003), the inversion nodes along the
X coordinate were set to coincide with the fault boundaries. Here
the X–Y nodes used to parametrize the velocity model are different
and are much finer compared to the previous DD tomography study.
This is to test the ability of the method to recover the structure when
there is no a priori information available for the model. The current
inversion grid nodes are at X = −35, −15, −10, −5, −3, −1, 0, 1,
2, 3, 4, 5, 6, 10, 20, 35 km, and at Y = −60, −40, −20, −10, 0, 10,
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Wavelet-based DD seismic tomography 947

Figure 1. (a) A horizontal slice through the true synthetic velocity model and (b) the approximation and detail coefficients of the model in the Haar wavelet
domain. The true velocity model in 3-D is similar to a ‘vertical sandwich’, which is constant with the depth. The wavelet transform is conducted up to two
scales. E, F and G mark detail coefficients at scale 1, respectively. B, C and D mark detail coefficients at scale 2, respectively. A marks the approximation
coefficients at scale 2. It can be seen that the model in the wavelet domain is quite sparse due to its step-like features.

20, 35 km. The nodes in depth are positioned at 0, 1, 3, 5, 7, 9, 11
and 16 km.

For this synthetic data set, the 1D wavelet transform using the
lifting scheme of Sweldens (1996) is applied sequentially to each
dimension of the 3-D model. As a result, the largest approximation
coefficients will be located in a small cube around the corner of
the 3-D model in the wavelet domain. Due to the difficulty of vi-
sualizing the approximation and detail wavelet coefficients in 3-D,
we just plot the 2-D wavelet coefficients of the true velocity model
in the horizontal plane in Fig. 1(b). Because the model is repre-
sented in non-uniform grid nodes, the wavelet transform based on
the lifting scheme is appropriate for dealing with the non-uniform
model sampling. This is because the lifting scheme only involves
the averaging and subtraction calculations for the signal samples at
certain scales using the predefined wavelet filters (Sweldens 1996).
For seismic traveltime tomography, the sensitivities of traveltime
with respect to slowness model parameters are simply weighted ray
path lengths for related inversion nodes. In our implementation of
G̃ = GWT, we first obtain the sensitivities for the model slowness
parameters for each ray path and then apply the wavelet transform
to them to construct the new sensitivity matrix. In this way, we can
directly build the sensitivity matrix G̃ in the wavelet domain. We
select the Haar and D4 wavelets from the Daubechies wavelet fam-
ily (Daubechies 1992) due to their orthogonality and compactness.
We select a 1-D velocity model increasing from 5.0 to 5.5 km s–1

with depth as the initial model, which is very different from the true
model.

We first use the standard DD tomography method to see how well
the synthetic model can be recovered. 10 iterations of simultaneous

inversion are performed. The absolute traveltime root mean square
(rms) residual drops from 0.583 s before the inversion to 0.091 s
after the inversion, and the differential time rms residual decreases
from 0.253 to 0.059 s (Fig. 3a). The horizontal slices of the velocity
model at different depths are shown in Fig. 4(a). It can be seen
that low velocity zones can be recovered but at various degrees at
different depths. The absolute difference between the inverted model
from the standard DD tomography and the true velocity model has
a mean value of 0.287 km s−1, a median value of 0.182 km s−1, and
a standard deviation of 0.086 km s−1.

For the wavelet-based DD tomography, we first use the Haar
wavelet and the result converges after five iterations (Fig. 3b). The
value of λ in eq. (7) is selected by using the L-curve method. The
absolute traveltime RMS residual drops from 0.583 s before the in-
version to 0.059 s after the inversion. In comparison, the differential
time rms residual decreases from 0.253 to 0.059 s. The horizontal
slices of the velocity model resulting from wavelet-based DD to-
mography using the Haar wavelet are shown in Fig. 4(b). In compar-
ison to the standard DD tomography, the model is better recovered
with a more accurate low velocity zone and sharper fault zone
boundaries. The absolute difference with the true model is smaller,
with the mean value, median value and standard deviation value of
0.154, 0.095 and 0.027 km s−1, respectively. As seen in Fig. 4(b), the
low velocity boundaries are much more sharply recovered. We also
use the D4 wavelet to test the effect of different wavelet families
on inversion. The convergence curves for absolute and differential
traveltimes are shown in Fig. 3(c) and the velocity model is shown
in Fig. 4(c), respectively. The convergence curves using the Harr
and D4 wavelets look very similar (Figs 3b and c). The absolute
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948 H. Fang and H. Zhang

Figure 2. Event location (filled circles) and stations (open triangles) used for the synthetic data set. The tomographic inversion grid nodes are shown as crosses.
They are located at X = –35, –15, –10, –5, –3, –1, 0, 1, 2, 3, 4, 5, 6, 10, 20, 35 km, at Y = –60, –40, –20, –10, 0, 10, 20, 35 km and at Z = 0, 1, 3, 5, 7, 9, 11,
16 km, respectively.

difference between the inverted model and the true model has a
mean value of 0.191 km s−1, a median value of 0.115 km s−1 and
the standard deviation value of 0.041 km s−1, which are smaller
than the standard DD tomography but larger than the case using the
Haar wavelet.

We also test how the inverted model differs when applying the
L2-norm regularization to the model wavelet coefficients, as used
by Hung et al. (2010, 2011). The convergence curve and the in-
verted model by using the Haar wavelet are shown in Figs 3(d) and
4(d), respectively. Compared to the case using the L1-norm regular-
ization (Fig. 4b), the absolute and differential traveltime residuals
decrease in a similar manner along with the iteration. The absolute
difference between the inverted model and the true model has a
mean value of 0.246 km s−1, a median value of 0.178 km s−1 and
a standard deviation value of 0.053 km s−1, which are about twice
of the corresponding values for the model inverted using the L1-
norm regularization but still slightly smaller compared to the model
inverted from the standard DD method.

4 D I S C U S S I O N S

A checkerboard resolution test is also performed to test the effec-
tiveness of the wavelet-based DD tomography method. Compared
to the ‘vertical sandwich’ velocity model (Fig. 1a), the checker-
board model is more complicated because of positive and negative
anomalies are added on the velocity model alternatively in three
directions (Fig. 5). The recovery degree of the checkerboard pattern

is characterized by the resolvability (Zelt 1998), which is used to
assess the recovered checkerboard model quantitatively. For each
node the resolvability is defined as:

R =

M∑
j=1

(Dnt j + Dnr j )2

2
M∑

j=1
(Dn2

t j + Dn2
r j )

, (10)

with Dn
t j and Dnr j the true and recovered velocity anomalies at

the jth node inside the model region consisting of M nodes. For this
synthetic test, we select two neighbouring nodes in each direction
centring the calculated node.

The resolution test shows that the Haar wavelet-based DD
tomography method with the L1-norm regularization performs very
well and small-scale checkerboard patterns can be well recovered
with an average resolvability of 0.85 (Fig. 5b). The D4 wavelet-
based method with the L1-norm regularization recovers the checker-
board pattern slightly worse with an average resolvability of 0.74
(Fig. 5c), but most small-scale patterns can be recovered. The rela-
tively better performance of the Haar wavelet than the D4 wavelet
might simply attribute to the fact that both the synthetic model
structure and the checkerboard pattern can be better represented
by the Haar wavelet basis. This is because both models have step-
like features, similar to the Haar wavelet. In comparison, the Haar
wavelet-based DD tomography method with the L2-norm regular-
ization recovers the checkerboard pattern the best (Fig. 5d), with an
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Wavelet-based DD seismic tomography 949

Figure 3. The rms absolute (red line) and differential (green line) traveltime residuals with iterations for (a) the standard DD tomography and the wavelet-based
DD tomography with (b) the Haar wavelet by L1-norm regularization, (c) the D4 wavelet by L1-norm regularization and (d) the Haar wavelet by L2-norm
regularization.

average resolvability of 0.86, which is slightly better than the recov-
ered model with the L1-norm regularization. The major difference
between the L1-norm regularization and the L2-norm regularization
is that the former results in a sparse model in the wavelet domain
while the latter gives a model with many small wavelet coefficients.
In the case that the model has many small-scale features such as
the checkerboard model, the L2-norm regularization may be more
appropriate since the model parameter is not sparse in the wavelet
domain. For the ‘vertical sandwich’ model shown in Fig. 1, the
model is expected to be sparse in the wavelet domain, thus the L1-
norm regularization shall perform better, as shown in Fig. 4. As
expected, the standard DD tomography method performs the worst
with an average resolvability of 0.73 (Fig. 5a). It can be seen that
many small-scale checkerboard features are smeared out due to the
use of the smoothing regularization in the inversion.

In order to make the inversion more stable and converge faster,
at each iteration we zero out some small detail coefficients related
to the transformed sensitivity matrix G̃ but keep the approximation
coefficients. Similar to the standard DD tomogaphy, we can also cal-
culate the derivative weight sum (DWS) value of the transformed
sensitivity matrix for each node (Thurber & Eberhart-Phillips 1999).
The DWS values in the space domain can be used to approximately
quantify how well the nodes are sampled by the nearby ray paths.
A larger DWS value indicates that the velocity at the correspond-
ing grid node is constrained by more ray paths. However, it does

not necessarily mean the grid node with a larger DWS value
is better resolved since the azimuthal sampling of ray paths is
also important. The threshold used to zero out the small wavelet
coefficients is based on the mean DWS value in the wavelet
domain for all the nodes. We set up a larger threshold value (90 per
cent of the mean DWS in the wavelet domain) at the first two itera-
tions and reduce it to 50 per cent in the following three iterations and
then 10 per cent in the last three iterations, which naturally leads
to a multiscale inversion that first resolves the robust large scale
features and then successively adds more and more resolvable fine
scale details. Test shows that this thresholding procedure does not
change the main feature of the original sensitivity matrix (Fig. 6a).
In this test, we zero out half of the wavelet coefficients and then
reconstruct the sensitivity matrix by the inverse wavelet transform
to see how much the sensitivity matrix has changed. We can see
even though half of the wavelet coefficients have been zeroed out,
the recovered DWS distribution is similar to the original one, indi-
cating that the sensitivity matrix is just minimally changed (Fig. 6b).
By thresholding small wavelet coefficients of the transformed sen-
sitivity matrix, we only need to invert for a limited number of
wavelet coefficients of the model. As a result, the inversion becomes
more stable.

In comparison, the thresholding we used here has a different
meaning from that of Loris et al. (2007). Our goal is to apply
different threshold values to the sensitivity matrix in the wavelet
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Figure 4. Horizontal slices through the velocity models from (a) the standard DD tomography and the wavelet-based DD tomography with (b) the Haar wavelet
by L1-norm regularization, (c) the D4 wavelet by L1-norm regularization and (d) the Haar wavelet by L2-norm regularization.

domain at different inversion stages to achieve a multiscale in-
version. In the case of Loris et al. (2007), they used the soft-
thresholding to the model wavelet coefficients to get a sparse solu-
tion during the inversion. In our case, the IRLS procedure is used
instead to obtain a sparse solution of model wavelet coefficients
without zeroing out small values by the hard or soft thresholding. We
also tested using the soft thresholding for removing small values of
the sensitivity matrix in the wavelet domain and the inverted model
looks similar.

The wavelet coefficients of the sensitivity matrix are partly re-
lated to the ray coverage as represented by the average DWS values
from all iterations (Fig. 7). Overall, we can see the DWS values at
inversion grid nodes are relatively larger when the corresponding

model wavelet coefficients are inverted. In comparison, the DWS
values are small when the model wavelet coefficients are zeroed
out, indicating that only the grid nodes with large DWS values in
the space domain are inverted. It is noted that some nodes have rela-
tively large DWS values but are still zeroed out during the inversion
(Fig. 7). This is because at first few iterations the threshold value for
zeroing out the elements of the transformed sensitivity matrix in the
wavelet domain is relatively large. This shows that the wavelet-based
tomography method is inherently data adaptive. The combination
of zeroing out small wavelet coefficients of the sensitivity matrix
and the sparsity constraint to the model wavelet coefficients by the
IRLS algorithm leads to very sparse wavelet coefficients for the
model. The percentage of non-zero coefficients increases gradually
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Figure 5. The checkerboard resolution tests for (a) the standard DD tomography and the wavelet-based DD tomography using (b) the Haar wavelet by the
L1-norm regularization, (c) the D4 wavelet by the L1-norm regularization and (d) the Haar wavelet by the L2-norm regularization.

from about 2 to 9 per cent along with the iterations, indicating that
more and more fine scale features are resolved.

When applying the wavelet transform to the sensitivity matrix,
the transformed G̃ matrix in the wavelet domain has different char-
acteristics. Let us take a ray path in two dimensions as an example.
Fig. 8(a) shows one row of the sensitivity matrix that represents
the ray path segments in each cell. When we transform it into the
wavelet domain, it resembles a ‘fat ray’ (Figs 8b and c). It is known
that by using the fat ray, the tomographic inversion is more sta-
ble (Husen & Kissling 2001). Actually, for the synthetic test, the
condition number of the sensitivity matrix is 75.7 in the wavelet
domain using the Haar wavelet, smaller than 121.9 of the original
sensitivity matrix with the same damping applied. This shows that

the sensitivity matrix in the wavelet domain is less ill-conditioned
and the inversion is more stable.

To further test the ability of the wavelet-based DD tomography
method, we only choose the approximation coefficients of the trans-
formed sensitivity matrix to do the inversion (Fig. 9). It is surprising
to see after only the first iteration the main features of the ‘vertical-
sandwich’ model can be resolved by just using the approximation
coefficients. In this case, less than 2 per cent of the elements of the
transformed sensitivity matrix are non-zero. Because all of the detail
coefficients are set to be zero, the norm of the recovered sensitivity
matrix is about 35 per cent of that of the original sensitivity ma-
trix, which means we can never recover the true sensitivity matrix.
However, with more iterations, the amplitude of the velocity model
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Figure 6. The DWS distribution in the space domain for (a) the standard DD tomography and (b) Haar wavelet-based DD tomography. In (b), the DWS values
are calculated from the inverse wavelet transform of the sensitivity matrix in the wavelet domain whose small values are zeroed out by a hard thresholding.

is better recovered. For the final model, its absolute difference has
a mean value of 0.303 km s−1, a median value of 0.189 km s−1

and the standard deviation value of 0.087 km s−1. This test shows
that we can recover the large-scale features of the model by mainly
using the approximation coefficients at the first few iterations and
then gradually resolve the small scale features by adding the detail
coefficients. In this way, the inversion may more likely avoid getting
stuck in the local minimum and find a global minimum to better fit
the data.

For the wavelet-based DD tomography method, another question
is how to choose the appropriate wavelet function. The major prop-
erties of the wavelet function are its orthogonality, support, and the
number of vanishing moments (Daubechies 1992). For our purpose,
as seen in eqs (4) and (5), the wavelet basis function needs to be
orthogonal or bi-orthogonal so that W−1 = WT or W−1 = W̃T. The

Haar wavelet has the smallest support of only 2, which is appropri-
ate when the number of grid nodes is small and the model structure
is relatively simple. Depending on the model itself, to detect the
singularities in the jth derivative, the wavelet function needs to be
sufficiently regular with at least j vanishing moments (Daubechies
1992). For the Haar wavelet, the number of vanishing moments is
one and can detect the first-order singularities. Therefore it is appro-
priate for the synthetic model because there are only eight inversion
nodes in the both Y and Z directions and the model is constant in
the Z direction and has discontinuities in the X direction. For the
D4 wavelet, it has the support of 4 and the vanishing moment of
2. Compared to the Haar wavelet, the D4 wavelet has a slightly
higher computational overhead. As shown in Fig. 4, the model in-
verted using the Haar wavelet in all three directions is better than
that inverted using the D4 wavelet. The fault zone boundaries are
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Figure 7. The average DWS values from all iterations of inversion for nodes corresponding to inverted (red) and zeroed out (blue) wavelet coefficients. The
horizontal axis refers to the inversion node index in the space domain. The node index associated with wavelet coefficient is converted from the wavelet domain
to the space domain.

Figure 8. (a) A row of the sensitivity matrix in 2-D. The representation of the row of the sensitivity matrix in the wavelet domain with (b) the Haar wavelet
and (c) the D4 wavelet.

somewhat smeared out and the low velocity anomalies are less ac-
curate when using the D4 wavelet. This is because the Haar wavelet
has the smallest support but is regular enough to characterize the
synthetic model. For the wavelet function with a longer support, the
‘fat ray’ area in the wavelet domain is larger (Fig. 8), indicating that
more wavelet coefficients are needed to resolve the model parame-
ters for individual grid nodes. If some related wavelet coefficients
cannot be resolved due to the poor ray sampling, the model will be
smeared out because only larger scale features are recovered from
the inverse wavelet transform. For most of the applications, the D4
wavelet may be more appropriate because it has a good balance

between the support and the number of vanishing moments, and
sometimes the model structures are too complicated for the Haar
wavelet to represent.

5 C O N C LU S I O N S

To reduce the effect of the mismatch between the regular inversion
nodes and ray distribution, we have developed a wavelet-based DD
seismic tomography method with the sparsity constraint by apply-
ing the L1-norm regularization to the model wavelet coefficients.
The new method takes advantage of the multiscale property of the
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Figure 9. The tomographic result using just the approximation coefficients after (a) the first iteration, (b) the forth iteration and (c) the last iteration with the
Haar wavelet by sparsity regularization.

wavelet representation and solves the model in the wavelet domain.
Different scales of the model are implicitly recovered from the in-
verted sparse wavelet coefficients of the model at different scales.
The new method is both data- and model-adaptive, providing a
natural and easy way to resolve the model features from larger to
smaller scales. Synthetic test shows the superior performance of the
new method compared to the standard DD tomography of Zhang
& Thurber (2003) on the ‘vertical sandwich’ velocity model. Both
smooth and sharp features are better resolved without introducing

blurring or other significant artefacts. The new method has the po-
tential to be applied in various regions with highly uneven data
distribution to get the fine scale features of the model where the
data coverage is relatively good.
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