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S U M M A R Y
We develop a new method to locate microseismic events induced by hydraulic fracturing
with simultaneous anisotropic tomography, using differential arrival times and differential
backazimuths. Compared to the existing double-difference method, our method incorporates
backazimuth information to better constrain microseismic locations in the case of downhole
linear seismic arrays used for monitoring induced seismicity. The tomography is constrained
to a 1-D layered VTI (transversely isotropic structure with a vertical symmetry axis) structure
to improve inversion stability given the limited passive seismic data. We derive analytical sen-
sitivities for the elastic moduli (Cij) and layer thickness L, and verify the analytical results with
numerical calculations. The forward modelled traveltimes and sensitivities are all calculated
analytically without weak anisotropy assumption. By incorporating the relative information
among events, the extended double-difference method can provide better relative locations for
events and, therefore, can characterize the fractures with higher accuracy. In the two tests with
synthetic data, our method provides more accurate relative locations than the traditional meth-
ods, which only use absolute information. With fast speed and high accuracy, our inversion
scheme is suitable for real-time microseismic monitoring of hydraulic fracturing.

Key words: Downhole methods; Fracture and flow; Body waves; Seismic anisotropy; Seismic
tomography; Seismic anisotropy.

1 I N T RO D U C T I O N

Microseismic monitoring is a commonly used and promising tech-
nique for characterizing the development of hydraulic fracturing
in shale gas/oil play (Rutledge & Phillips 2003; Maxwell et al.
2010; Zimmer 2011; Li et al. 2011). However, there are several
hindrances to the practical use of this technique: (1) the fracturing
induced seismic events are generally weak and difficult to detect;
(2) for the detected events, accurate picking of the first P- and
S-wave arrival times and reliably determining their arriving back-
azimuths are sometimes difficult due to noise contamination; (3)
even with good readings, the location of microseismic events is still
prone to error due to the lack of an accurate velocity model, for
example, in gas/oil shale cases where strong VTI anisotropy (up
to 30 per cent) is commonly seen (Warpinski et al. 2009). Fig. 1
shows some significant delay of the SV wave compared to the SH
wave from a microseismic event due to anisotropy in shale dur-
ing a hydraulic fracturing job. Perforation shots are often used to
calibrate the velocity model for locating the microseismicity in-
duced during the injection stages (Warpinski et al. 2005; van Dok
et al. 2011). However, anisotropy and heterogeneity in the veloc-
ity structure can result in location errors if the induced events do

not collocate with the perforation shots because the wave propa-
gation paths differ. In many hydraulic fracturing treatments, frac-
turing often does not occur in the vicinity of the perforation shots
and can be a few hundred metres away (e.g. Rutledge et al. 1998;
Rutledge & Phillips 2003). Therefore it is problematic to locate
the microseismicity if only the velocity model constructed from the
perforation shots is used. Furthermore, when events are located in-
dividually, the variability in location error among the events makes
it difficult to delineate fractures (Eisner et al. 2010; Maxwell 2010;
Grechka et al. 2011).

For tackling the first issue, Song et al. (2010) used the waveform
similarity for neighboring induced microseismic events to detect
weaker events by forming a library of waveform templates from
stronger events. In this study, we aim to deal with the second and
third issues. Taking advantage of the waveform similarity, we can
obtain more accurate differential arrival times for nearby microseis-
mic events. Using the more accurate differential times, relative seis-
mic locations can be better determined with the double-difference
location method. It has the ability to remove common errors in
both model and data that exist among closely spaced microseis-
mic events (Waldhauser & Ellsworth 2000; Wolfe 2002; Zhang &
Thurber 2003).

C© The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1
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Figure 1. Recorded three-component seismograms from a microseismic
event induced by shale-gas hydraulic fracturing. qP, SH and qSV phase
arrivals are marked by green, black and red lines. It clearly shows the SH
wave arrives about 11 ms earlier than the qSV wave, indicating strong
anisotropy in shale.

For microseismic monitoring, however, in many cases linear
seismic arrays deployed in boreholes are used. To better con-
strain microseismic locations, backazimuth information of seis-
mic waves arriving at different sensors is needed. The backaz-
imuths can be determined either from P waves or from SH waves
in a layered medium with VTI anisotropy. The SH waves usu-
ally have larger amplitudes but are also contaminated by P-wave
coda. De Meersman et al. (2009) improved the locations of in-
duced microseismicity in North Sea Valhall oil field with simul-
taneously estimated backazimuths for all stations within an array
using a noise-weighted Singular Value Decomposition (SVD) of
the complex analytic signals, together with better traveltime picks.
Rutledge & Phillips (2003) determined the induced event locations
in Cotton Valley with both traveltime and backazimuth informa-
tion. They improved relative event locations by extracting more
consistent arrival time picks from peaks and troughs of similar time-
interpolated waveforms. It should be noted that small-unaccounted
deviation of the borehole could result in considerable errors in de-
termining the azimuthal distribution of the fractures (Bulant et al.
2007). In our paper, we extend the double-difference method to in-
clude backazimuths from P waves in addition to arrival times. Sim-
ilar to differential arrival times, we expect that differential backaz-
imuths are also more accurate than the absolute values due to com-
mon errors. As a result, the new double-difference method using
both differential times and backazimuths is able to better determine
relative seismic locations.

When the event locations and origin times are known, anisotropic
tomography can be greatly simplified. In ideal cases such as ex-
periments, if compressional and shear waves that propagate hori-
zontally and vertically in a homogeneous space are recorded with
waves propagating in other directions, then the parameters of a VTI
medium can be determined separately and the tomography for a
homogeneous space can be greatly simplified (Nihei et al. 2011).
In real cases, however, it is very uncommon to have such an ideal

source–receiver geometry. Mah & Schmitt (2003) used a global
search method to simultaneously determine all elastic moduli of
a homogenous composite material from traveltimes. However, the
computer time required by their method increases very rapidly with
the number of observations and unknown parameters. To obtain a
velocity model that better reflects the structure between the actual
microseismicity and the receivers, Grechka et al. (2011) simul-
taneously estimated the general anisotropy of the medium while
locating the microseismicity, assuming the medium is a homoge-
neous anisotropic space. However, the receiver array often spans a
large depth range and is likely to be in a very different formation
from where the microseismic events are located. As a result, it could
be unrealistic to assume the medium to be homogeneous in these
cases. Zhang et al. (2009) estimated the heterogeneous isotropic
velocity structure in an oil/gas reservoir with the double-difference
tomography method of Zhang & Thurber (2003). This method si-
multaneously locates seismic events and determines the velocity
model by using differential traveltimes and absolute picks from
reservoir induced seismic events. However, their ideal azimuthal
coverage with five monitoring wells is rarely seen in hydraulic frac-
turing cases, and the anisotropy in the reservoir was not addressed
in their study. It should be noted that sometimes an artificial effect
of anisotropy may appear in traveltimes observed in boreholes if the
deviation of the borehole is not correctly taken into account (Bulant
et al. 2007).

Considering the above problems, our study focuses on deter-
mining the anisotropic structure of the medium and locations of
the microseismic events: (1) we develop a new anisotropy tomog-
raphy method to determine the anisotropic structure between the
microseismic events and the receiver array using arrival time picks
(qP, qSV and SH), with the structure assumed to be a 1-D layered
VTI medium given the limited spatial coverage of passive micro-
seismic observations; (2) we extend the double-difference location
method to use more accurate differential arrival times (Waldhauser
& Ellsworth 2000; Zhang & Thurber 2006; Foulger & Julian 2011;
Castellanos et al. 2012) and differential backazimuths to better con-
strain the relative event locations. The layer approximation of the ve-
locity structure is considered to be reasonable in most downhole mi-
croseismic monitoring cases, especially in the hydraulic fracturing
cases, where the medium mainly consists of flat sedimentary rocks
(e.g. Rutledge et al. 1998; Warpinski et al. 2005), and the epicentral
distance between events and sensors often varies from a few tens to
a few hundreds of metres. The velocity tomography using absolute
picks is important to determine the absolute locations of the events,
while the differential observations are critical to improve the relative
locations and better delineate the fractures (Zhang et al 2009).

In this study, we derive analytically sensitivities for the elastic
moduli (Cij) and layer thickness (L) in our seismic location and
tomography algorithm without any weak anisotropy assumption.
Utilizing a method for calculating the traveltimes of qP, qSV and
SH waves analytically (Tang & Li 2008), our inversion scheme is
fast and accurate, and especially suitable for real time monitoring.

2 M E T H O D O L O G Y

2.1 Microseismic location with differential arrival times
and backazimuths

Let us denote the observed arrival time from event i to station k
as ot i

k and the corresponding modelled arrival time as mt i
k from ini-

tial event location and velocity model. The conventional seismic
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location method simply relates the arrival time residual to the per-
turbations in event location and origin time by assuming the velocity
model is known:

t r i
k = ot i

k − mt i
k =

3∑
l=1

∂T i
k

∂xi
l

�xi
l + �τ i , (1)

where xl (l = 1, 2, 3) denotes seismic locations in three dimensions,
T i

k is the traveltime, and τ i is the origin time. If we take the difference
between the arrival time residuals from event pairs i and j to a
common station k, it becomes the double-difference location method
first proposed by Waldhauser & Ellsworth (2000) as follows:

t r i
k − t r j

k =
3∑

l=1

∂T i
k

∂xi
l

�xi
l + �τ i −

3∑
l=1

∂T j
k

∂x j
l

�x j
l − �τ j , (2)

where the difference can also be defined as

t r i
k − t r j

k =
(

t i
k − t j

k

)o
−

(
t i
k − t j

k

)m
. (3)

The double-difference method is capable of eliminating the un-
modelled common errors existing along the ray paths between a
closely spaced cluster of events and a receiver (Zhang & Thurber
2006). In an anisotropic model, the sensitivity of the traveltime
with respect to the hypocentre is simply the phase slowness pl at the
source location,

∂T i
k

∂xi
l

= pi
l (4)

and the sensitivity of the traveltime with respect to the origin time
is unity (eq. (1)). Note in isotropic media the phase slowness and
group slowness are the same.

We extend the double-difference location method using differen-
tial arrival times (Waldhauser & Ellsworth 2000) to include P-wave
arrival backazimuths. The notations for backazimuth in the follow-
ing are similar to those for arrival time. First, the residual between
the observed and modelled backazimuths can be expressed as

ϕr i
k =

3∑
l=1

∂ϕi
k

∂xi
l

�xi
l (5)

and the corresponding double-difference form is

φr i
k − ϕr j

k =
3∑

l=1

∂ϕi
k

∂xi
l

�xi
l −

3∑
l=1

∂ϕ
j
k

∂x j
l

�x j
l , (6)

where ϕr is the backazimuth residual. In ray approximation, the
backazimuth angle can be expressed as:

tan
(
ϕi

k

) = ∂T i
k /∂yr

∂T i
k /∂xr

(7)

with horizontal slowness vector, where ∂T i
k /∂xr and ∂T i

k /∂yr are
the traveltime derivatives with respect to x and y coordinates at the
receiver location, respectively. We define the positive x-axis as the
zero backazimuth angle, and the angle increases counter-clockwise.
In a heterogeneous medium, the sensitivity of the backazimuth with
respect to the hypocentre can be derived from eq. (7):

∂ϕi
k

∂xl
= α1

∂
(

∂T i
k

∂yr

)
∂xi

l

+ α2

∂
(

∂T i
k

∂xr

)
∂xi

l

, (8)

where

α1 = 1

∂T i
k /∂xr

1

1 +
(

∂T i
k /∂yr

∂T i
k /∂xr

)2

α2 = − 1(
∂T i

k /∂xr

)2

∂T i
k /∂yr

1 +
(

∂T i
k /∂yr

∂T i
k /∂xr

)2
. (9)

In Appendix A, we show how to approximate eq. (8) with the finite
difference calculation. For a 1-D layered VTI velocity structure
where the backazimuths can be directly given by the source–receiver
geometries, the sensitivities with respect to the hypocentre can be
expressed as:

∂ϕ

∂xs
= − ys − yr

(xs − xr )2 + (ys − yr )2

∂ϕ

∂ys
= xs − xr

(xs − xr )2 + (ys − yr )2

∂ϕ

∂zs
= 0. (10)

The differential backazimuth angles can be calculated by differ-
entiating two angles obtained from the eigenvectors of the covari-
ance matrix of the seismograms (Magotra et al. 1989), or can be
calculated independently with the method described in Appendix B.

To demonstrate how the extended double-difference method can
reduce the common traveltime and backazimuth errors for closely
spaced events, we create an anisotropic heterogeneous model by
adding strong random perturbation to a VTI layer model (Fig. 2).
For a VTI medium, the property of anisotropy can be character-
ized by five independent elastic moduli C11, C13, C33, C55 and C66.
Alternatively, the property can be characterized by the Thomsen’s
parameters (Thomsen 1986), which are the vertical P-wave velocity
α0, the vertical S-wave velocity β0 and three anisotropy parame-
ters ε, δ and γ . In the following discussions, we actually use the
density-normalized elastic moduli C̃i j , (defined as C̃i j = Ci j

ρ
), but

for simplification we still use Ci j to represent C̃i j . The random
perturbation is on the elastic moduli, and for a certain location the

Figure 2. Randomly perturbed model for C11 (Gpa cm3 g–1). The model
is constructed by adding spatially correlated (Lc = 10 m) random Gaussian
noise to a VTI layer model. One fracture system with two parallel fractures
is shown here. The epicentre distance from the centre of the fracture system
to the receiver array is about 230 m. The parallel fractures trend in 45◦ in
the X–Y plane, and the dipping angles (away from the vertical direction) are
about 55◦.
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perturbations on the five elastic moduli (C11, C13, C33, C55, C66) are
the same in percentage, for example, the anisotropic parameters ε, δ

and γ are invariant after the perturbation, while the vertical velocity
α0 and β0 are perturbed randomly (cf. eq. (8), Thomsen 1986). The
random Gaussian heterogeneity δC (x, y, z) has correlation length
about 10 m and peak amplitude about 0.15. The perturbation can be
expressed as:

Ci j (x, y, z) = C0
i j (x, y, z) + δC (x, y, z) · C0

i j (x, y, z) . (11)

In this model, we create eight closely spaced events in two neigh-
boring parallel fractures (four events on each fracture). We used
an in-house finite-difference wave propagation code (fourth order
in space, second order in time) to generate synthetic seismograms
(Moczo et al. 2007), and we manually picked the arrival times for
qP, qSV and SH in each seismogram at their first breaks. The events
within a cluster are ordered (1–4) starting from the closer end to the
receiver array to the distant end in one fracture, and then similarly
for the other parallel fracture (5–8).

Fig. 3 shows the traveltimes and backazimuths determined from
the synthetic seismograms. For the traveltimes, a similar trend of
variation can be found for all events, indicating a similar prop-
agation path while occasional abrupt changes among the picks
at a common receiver are due to picking errors and influences
from small heterogeneities that only affect some events. The de-
termined backazimuths from the waveforms are heavily biased by
the heterogeneity, and vary in a quite wide range (∼39◦ to ∼55◦),
compared to a much smaller theoretical range (∼47.5◦ to ∼49.5◦,
shaded box) in a case without random heterogeneity. The hetero-
geneities in this model have larger influence on the backazimuths
in comparison with the influence on the traveltimes, which are
mostly perturbed by less than a few percent (not plotted for clar-
ity). However, at a certain receiver the variation of the backaz-
imuths among different events is small, for example, usually less
than a few degrees. This synthetic data indicates when the differ-
ential backazimuth information is included in the inversion, the
events should be located more accurately in a tighter azimuthal
range.

Figure 3. Traveltimes for qP, qSV, SH phases and backazimuths from eight
events in a cluster. The shaded box indicates the theoretical backazimuths
that would be observed if the medium is a VTI layer structure without
random perturbations.

2.2 Strong anisotropic tomography for 1-D layered VTI
structure

In our study, we parametrize the velocity structure as 1-D layers with
different elastic modulus Ci j (i j = 11, 13, 33, 55, 66) and thickness
L for each layer. First, we study the sensitivity with respect to elastic
modulus. For a VTI medium, the phase velocity v for qP, qSV and
SH waves with phase angle θ are given by (e.g. Thomsen 1986;
Tang & Li 2008):

ρv2
p (θ ) = 1

2
[C33 + C55 + (C11 − C33) sin2 (θ ) + D (θ )]

ρv2
SV (θ ) = 1

2

[
C33 + C55 + (C11 − C33) sin2 (θ ) − D (θ )

]
ρv2

SH (θ ) = C66 sin2 (θ ) + C55 cos2(θ ), (12)

where

D (θ ) =
{

(C33 − C55)2 + 2
[
2 (C13 + C55)2 − (C33 − C55)

× (C11 + C33 − 2C55)
]

sin2 (θ ) + [
(C11 + C33 − 2C55)2

− 4 (C13 + C55)2] sin4 (θ )

} 1
2

. (13)

2.2.1 Sensitivity with respect to elastic moduli

The sensitivity of traveltime T with respect to the elastic modulus
Ci j in layer k is:

∂T k

∂Ck
i j

=
∂

(
lk

vk
g

)
∂Ck

i j

= − lk(
vk

g

)2

∂vk
g

∂Ck
i j

, (14)

where lk is the ray path within layer k and vk
g is the group velocity

in layer k. Note the derivative depends on the group velocity, thus
the anisotropic tomography problem becomes nonlinear. Using the
relation between the phase and group velocities (Thomsen 1986;
Tang & Li 2008), the sensitivity of the group velocity with respect
to the elastic modulus is:

∂vg

dCi j
= 1

2vg

∂v2
g

dCi j
= 1

2vg

∂

(
v2 + 1

4v2

(
∂v2

∂θ

)2
)

∂Ci j

= 1

2vg

⎡⎣ ∂v2

∂Ci j

(
1 − 1

4v4

(
∂v2

∂θ

)2
)

+ 1

2v2

∂v2

∂θ

∂
(

∂v2

∂θ

)
∂Ci j

⎤⎦ .

(15)

Eq. (15) is a general expression for qP, qSV and SH. However,
the terms ∂v2/∂Ci j and ∂( ∂v2

∂θ
)/∂Ci j change for different types of

waves. The derivation of these derivatives for qP, qSV and SH
is given in Appendix C. We noticed Zhou & Greenhalgh (2005)
derived analytical expressions of the sensitivities with respect to
elastic moduli in VTI medium in different forms and with a quite
different approach.

2.2.2 Sensitivity with respect to layer thickness

Here we study the sensitivity with respect to the layer thickness L .
The perturbation of the ray path and traveltime caused by the change
of the layer thickness (or interface position) is illustrated in Fig. 4.
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Figure 4. Ray path and traveltime perturbations caused by layer interface
change. S denotes the source and R denotes the receiver. The group angle
and group velocity are �1, V 1

g in the first medium, and �2, V 2
g in the second

medium, respectively. The original ray is denoted by the solid line and the
perturbed interface and ray are denoted by the dashed lines.

Obeying Snell’s law, we consider a virtual source Sv emits a par-
allel ray (dashed) that hits the perturbed interface and is converted to
the same ray (solid) in the second medium. Here we decompose the
traveltime perturbation into two parts: (1) the perturbation caused
by changing the original source S to the virtual source Sv; (2) the
perturbation within �z caused by group velocity change (V 1

g to V 2
g )

and ray path change (solid to dashed). It should be emphasized that
when the interface location is perturbed, the actual ray will change
its paths in both layers and, in fact, does not coincide with either the
solid or the dashed rays shown in Fig. 4. The sensitivity decompo-
sition above is just an exact alternative expression for the traveltime
perturbation. For the first part of the sensitivity, that is, the travel-
time perturbation due to the source location changing from S to Sv

as the result of the interface perturbation �z, the sensitivity is

S1 = ∂T

∂z
= ∂T

∂r

∂r

∂z
= ∂T

∂r

−[�z tan(�1) − �z tan(�2)]

�z

= ∂T

∂r
[tan(�2) − tan(�1)], (16)

where the negative sign appears due to the coordinate definition
(moving to the negative X-axis). ∂T/∂r is the horizontal (radial)
phase slowness pr .

For the sensitivity in the perturbation region �z, we have

S2 =
Ldash

V 1
g

− Lsolid

V 2
g

�z
=

�z
cos(�1)V 1

g
− �z

cos(�2)V 2
g

�z

= 1

cos (�1) V 1
g

− 1

cos (�2) V 2
g

. (17)

Then finally we can express the sensitivity of the traveltime with
respect to the layer thickness, or the interface position as

∂T

∂L
= S1 + S2 = pr [tan(�2) − tan(�1)] + 1

cos (�1) V 1
g

− 1

cos (�2) V 2
g

. (18)

Here we derived the exact sensitivity without the need to recal-
culate the ray path. It should be noted that although our derivation
is based on a simple two-layer model, the sensitivity expression
∂T/∂L is actually valid for any multilayer case. For any intermedi-
ate layers between the source and the receiver in a multilayer case,
the source and receiver positions shown above are simply replaced

by the intersection point of the rays with the layer interfaces. The
sensitivity expression remains the same for each layer. Although
we derived the sensitivity in a situation where the top layer has a
faster wave speed than the bottom layer, the sensitivity expression
remains the same if the top layer has a slower wave speed. If the ray
travels upwards, a negative sign should be added to the sensitivity
∂T/∂L .

2.3 Scheme for hypocentre location with simultaneous
anisotropic tomography

The inversion scheme for determining both the velocity structure
and the hypocentres can be written in the following form:⎡⎢⎢⎢⎢⎢⎢⎢⎣

Qt
D D At

Qϕ

D D Aϕ

wt At

wϕ Aϕ

wc P c

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣

�Ci j

�L

�X

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Qt
D D�T

Qϕ

D D�ϕ

wt�T

wϕ�ϕ

−wc P cC0
i j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (19)

where Qt
D D and Qϕ

D D are the differential matrices for traveltimes
(Wolfe 2002; Zhang & Thurber 2006) and backazimuths, respec-
tively, and Qϕ

D D is constructed similarly to Qt
D D; wt and wϕ are

the relative weights for absolute traveltimes and backazimuths, re-
spectively; At = [M t H t ] is the sensitivity matrix of the traveltime
with respect to the velocity structure (M t , eqs 14 and 18), and the
event hypocentres (H t , eq. 4); Aϕ = [0 Hϕ] is the sensitivity ma-
trix of the backazimuth with respect to the hypocentres (eq. 10);
P c is the constraint operator on Ci j that attempts to retain some
well-determined anisotropic parameters ε, δorγ from core sample
measurements in the lab (Chang Li, personal communication; Ap-
pendix D). �Ci j is the perturbation on the elastic moduli, and �L
is the perturbation on the layer thickness; �X is the perturbation on
hypocentre and origin time of events; �T is the traveltime residual,
and �ϕ is the backazimuth residual. Note since we assume 1-D lay-
ered VTI structure, the sensitivity of the backazimuth with respect
to the velocity structure is null.

In our inversion, we parametrize the density normalized elastic
moduli with the unit of Gpa cm3 g–1, as we found such parametriza-
tion would make the sensitivity more balanced for elastic moduli,
layer thicknesses (metre) and source parameters (metre for hypocen-
tre, second for origin time). The Levenberg–Marquardt algorithm
(Levenberg 1944) is used for the inversion. We iterate the inversion
until the reduction in residuals becomes negligible. Also, as local
minima exist in this nonlinear inverse problem, different damping
parameters were tried in the inversion to obtain the best results.

3 N U M E R I C A L E X A M P L E S A N D
D I S C U S S I O N S

In this section, we show two examples of joint microseismic loca-
tion and anisotropic tomography using differential data. In the first
example, a model with strong anisotropic layers is used for the test
(Fig. 5). The model has four layers and three interfaces. There are
two fracture systems in the model with two neighboring parallel
fractures in each system and each fracture is associated with four
events. The general trend of the fracture system is similar to that
shown in Fig. 2. In total there are 16 events used as passive sources
for the anisotropic tomography. The traveltime data for this example
are generated with the analytic ray shooting method by Tang & Li
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Figure 5. 1-D layered anisotropic model with receivers (black triangles) and
events (red dots and red squares with white edges). Note: this is a side view
of a 3-D model with each event projected onto its radial plane to clearly show
the ray angles. The backazimuths of the events differ. The layers from top
to bottom are numbered 1–4, respectively. The qP ray paths from selected
events are illustrated with the dashed lines to show the ray angle coverage.
In this synthetic model, there are 20 receivers numbered 1–20 from top
to bottom. There are two fracture systems separated at about 50 m in the
horizontal direction. In each fracture system, there are two fractures with
four events associated with each fracture.

(2008), and the backazimuth data are determined from the source–
receiver geometry. Note, Fig. 5 shows the projections of events and
ray paths in the radial planes for clarity, and the backazimuths of
the events are different. We assume randomly half of the receivers
have readings of the qP, qSV, SH and backazimuth θ for each event
to resemble a realistic noisy situation or variation in array sensitiv-
ity. The random receiver choice is different for different traveltime
phases as well as for backazimuths. The qP ray paths from one
event in each cluster are illustrated with the dashed lines to show
the ray angle coverage. The qSV and SH ray paths deviate from the
qP ray paths due to different contrast between layers. However, the
deviations are minor in this case and thus are not shown for avoiding
redundancy.

We first examine the analytical derivation of the sensitivity with
respect to the elastic modulus and layer thickness. We can use nu-
merical second-order central differencing to approximate the deriva-
tive:

∂T

∂Ci j
≈ T

(
Ci j + �C

) − T
(
Ci j − �C

)
2�C

(20)

and

∂T

∂Lk
≈ T (L K + �L) − T (Lk − �L)

2�L
. (21)

For each perturbed parameter the traveltime is computed ac-
curately with an analytical method (Tang & Li 2008). Therefore,
the numerical difference can achieve great accuracy by using a
very small increment. The numerical derivatives, though time-
consuming to calculate, can be used as the reference. Note in the

Figure 6. Analytical sensitivities (a) and their differences from the numer-
ical ones (b) for the elastic moduli (Ck

i j ) and layer thickness (Lk ), with
the superscript being the layer index. The rows correspond to different ob-
servations from different events to different receivers for qP, qSV and SH
waves. Note the thickness of the fourth layer (L4) is a null parameter in our
inversion and thus is not shown.

analytical calculation of the sensitivity with respect to the elastic
modulus, the ray path is assumed to be stationary (not changed with
small perturbation). However, in the numerical calculation, there is
no such assumption of stationarity.

Using the model shown in Fig. 5, we calculate and compare the
analytical derivatives and numerical derivatives. In Fig. 6, approxi-
mately the first one third of the rows are the sensitivities related to
the qP waves, the second one third are the sensitivities related to the
qSV waves and the last one third are the sensitivities related to the
SH waves. Fig. 6 shows that the differences between the analytical
ones and the numerical ones are, in general, less than 0.5 per cent.
This comparison validates our derivations.

Fig. 7 shows the comparison between the sensitivity matrix A (in-
cluding At and Aϕ) and the differential sensitivity matrix Q · A. As
the backazimuths have null sensitivity with respect to the propaga-
tion medium in the 1-D layered anisotropic model, the last 130 rows
related to the backazimuth sensitivities shown in the box in Fig. 7(a)
are all zeros. It can be found that the differential sensitivities Q · A
with respect to the medium (Ci j and L) have been significantly
reduced compared to those in A (boxed section), while the sensi-
tivities with respect to the hypocentre and origin time have been
mostly retained. This is mainly caused by the model parametriza-
tion (model represented as layers) and the limited space span of
microseismic events. If the model is represented as smaller cells or
grid nodes and microseismic events are more widely distributed, the
differential model sensitivities will be more sensitive to the model
parameters around the microseismic source region, as described in
Zhang & Thurber (2006). For the example shown in Fig. 5, the
extended double-difference method in eq. (19) is most sensitive to
event locations and origin times rather than the propagation medium
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Figure 7. Comparison between the sensitivity matrix A (including At and
Aϕ ) (a) and the differential sensitivity matrix Q · A (b). The rows corre-
spond to the observations from different events to different receivers for qP,
qSV and SH and backazimuths. The boxed section (23 columns) marks sen-
sitivities or differential sensitivities with respect to the medium properties
(Ci j and L), and the rest area indicates the sensitivities or differential sen-
sitivities with respect to event hypocentres and origin times. Note Fig. 6(a)
shows the same first 470 rows of the boxed section shown in Fig. 7(a) but in
different colour scales for clarity. Here column normalization in A has been
applied (Zhang & Thurber 2006) to balance different sensitivity magnitudes
for different parameters, and thus comparison of the sensitivity magnitudes
among different columns is not meaningful. A and Q · A are calculated for
the final results given in Figs 10 and 12.

properties. This is the essential reason why the extended double-
difference method is capable of providing better constraints in event
relative locations. This also means the model parameters in this case
are determined mostly with absolute traveltimes but not differential
traveltimes.

After validating analytic model sensitivities, we first check the
influence of seismic anisotropy on microseismic locations. Assum-
ing only the velocities of the layers in the horizontal direction are
acquired through perforation shots or string shots (Warpinski et al.
2009), but the model anisotropy parameters are unknown and thus
the model is considered isotropic, we locate the events with both
the traditional method (Fig. 8) and the extended double-difference
method (differential method, Fig. 9), but with the velocity model
fixed, using noise-free synthetic data. Note in this case the velocity
inaccuracy does not affect the backazimuth. From Figs 8 and 9,
it can be clearly seen that neither method gives correct absolute
locations, as the velocity in the horizontal direction is faster than
the velocity in any other direction for each layer. Therefore, the
hypocentres are relocated further away from the correct locations.
However, it also shows that the extended double-difference method
incorporating differential arrival times and backazimuths improves
relative locations of the events. The parallel factures in the two frac-
ture systems can be depicted correctly from the double-difference
location result while the traditional method gives distorted frac-
tures. The ability to recover fracture geometry more correctly by

Figure 8. Relocated microseismic events in X–Y, X–Z and Y–Z planes using
the absolute arrival times and backazimuths without inverting the anisotropy
model parameters. Red dots and squares indicate the true event locations on
the two fractures, respectively. Blue circles and green squares indicate the
located events associated with the two fractures in each system, respectively.

the extended double-difference method lies in its advantage of re-
moving some common model errors along ray paths caused by the
inaccurate velocity model.

We now consider locating the events with simultaneous
anisotropic tomography. To resemble realistic situations in our
test, incoherent random noise for each traveltime observation
(σ = 0.2 ms) and coherent random noise at each station (or random
station term, σ = 0.6 ms) are added to the observed traveltimes. For
the observed backazimuths, incoherent random noise for each back-
azimuth observation (σ = 1◦) and coherent random noise at each
station (σ = 5◦) are added to the observed data. This is to simulate
the fact that the coherent noise is generally greater than the random
noise and the noise level added to the data is similar to that observed
by Grechka et al. (2011) for data with reasonable quality. Fig. 10
shows the inverted elastic moduli and layer thicknesses starting with
an isotropic model using the vertical P- and S-wave velocities and
layer thicknesses that are different from the correct values by about
10 m. Due to different ray angle coverage, the elastic moduli are
recovered with varying degrees of success for different layers in the
presence of noise. The second and third layers with rays sampling
at more different angles are recovered relatively well. At a given
group angle, the sensitivity with respect to different elastic moduli
varies, and thus the recovery accuracy for different elastic moduli
also changes, given noisy observations from the limited number of
hypocentres. The variation of sensitivity with respect to the group
angle has been discussed in detail by Chapman & Miller (1996). In
general, the tomography is ill conditioned when the rays only sam-
ple the medium in limited directions, especially when the source
locations need to be determined simultaneously, as there is a trade-
off between the velocity structure and the source locations (Zhang
& Thurber 2006). Because there exist uncertainties for the inverted
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Figure 9. Same as Fig. 8 but for the extended double-difference method.

Figure 10. Comparison between true values of elastic moduli and layer
thicknesses and inverted ones by the extended double-difference method.
Red dots indicate the true parameter values and cyan dots indicate the
inverted values.

elastic moduli for each layer, the thicknesses of the layers are also
biased to some degree.

Figs 11 and 12 show the location results for both the traditional
method, which only uses the absolute arrival times and backaz-
imuths, and the extended double-difference method. Comparing
the absolute locations, the two methods produce similar results.
However, the relative locations of the events given by the ex-
tended double-difference method are much better than the tradi-
tional method, and the fractures are successfully delineated with
clear parallelism recovered.

In the second example, we use the anisotropic heterogeneous
VTI model as shown in Fig. 2 to test our method in the presence of

Figure 11. Relocated microseismic events in X–Y, X–Z and Y–Z planes
using the absolute arrival times and backazimuths with inverting anisotropy
model parameters. Red dots and squares indicate the true event locations on
the two fractures, respectively. Blue circles and green squares indicate the
located events associated with the two fractures in each system, respectively.

Figure 12. Same as Fig. 11 but for the extended double-difference method.

strong model heterogeneities. The event-receiver geometry together
with the perturbed C11 model is shown in Fig. 13. In this test,
three clusters of events associated with three fracture systems, each
of which has eight events in two neighboring parallel fractures
(four events on each fracture), are used as the passive sources for
anisotropic tomography. The receivers are located at the same depth
as in the first example, but the horizontal locations are shifted to
(50, 50) m. All these events in the fractures are assumed to have the
same source property, and a double-couple mechanism is used in
our finite-difference code to generate the synthetic waveforms for all
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Figure 13. Randomly perturbed model for C11 (GPa cm3 g–1). This velocity
model is the same as the one shown in Fig. 2, but there are three fracture
systems.

events. Rodriguez et al. (2012) proposed a method to simultaneously
invert for the source hypocentre and origin time, together with the
source mechanism using a sparse representation theory.

In this case, we only use phase picks of qP, qSV and SH from
randomly selected one third of the receivers for each event, and for
different phases the random choice is different. The sparse obser-
vation resembles the situation where microseismic events are weak
and the identifiable phases change with the receivers as the radi-
ated energy of different types of waves varies with direction. The
qP, qSV and SH traveltimes are manually picked from the synthetic
seismograms generated by our in-house finite-difference wave prop-
agation code. Note in this test we did not add any noise, because
(1) we have already tested the influence of coherent and incoherent
noises in the first example and (2) our manual phase picking can
introduce some errors in the observed arrival times. Therefore, in
this example the differences between the observed and modelled
traveltimes consist of three origins: (1) the random perturbation on
the elastic moduli, which cannot be captured in our tomography
with layer VTI assumption, (2) picking errors and (3) errors in-
troduced by high frequency ray approximation compared to finite
frequency wave propagation. For this example we also start from an
isotropic-layered velocity model as we do in the first one.

In this example, we obtained the differential arrival times by
cross-correlating the waveforms, while obtaining the differential
backazimuths by the method described in Appendix B. The ab-
solute backazimuths are determined from the eigenvectors of the
covariance matrix of the seismograms (Magotra et al. 1989). In
Fig. 14, two events with a separation distance of 15 m in clus-
ter 3 (the farthest cluster) are used as an example to show the
similarity of waveforms after being shifted with the differential
time given by waveform cross-correlation. The wiggles are aligned
well after the shift, indicating correct differential arrival times have
been determined. We found the differential backazimuths given by
the method in Appendix B are similar to the differential backaz-
imuths given by directly differentiating the absolute backazimuths
at most receivers, as both approaches use waveform information au-
tomatically. In comparison, differential traveltimes obtained from
waveform cross-correlation can often be more accurate than those
from directly differentiating the manually picked absolute times

Figure 14. Waveform alignment for qP, qSV and SH phases for two events
by waveform cross-correlation. The grey windows indicate the time win-
dow used for cross-correlation. The source wavelet used in the synthetic
modelling is a Ricker wavelet with the central frequency f0 = 200 Hz.

Figure 15. Relocated microseismic events in X–Y, X–Z and Y–Z planes for
the second example using the absolute arrival times and backazimuths with
inverting anisotropy model parameters. Red dots and squares indicate the
true event locations on the two fractures, respectively. Blue circles and green
squares indicate the located events associated with the two fractures in each
system, respectively. There are three fracture systems in this example.

(Waldhauser & Ellsworth 2000). Note in our finite difference wave-
form modelling, we assume the events within one fracture system
have the same mechanisms. This assumption should be reasonable
considering the events occur at different segments of two parallel
fractures and they are close in space.

Fig. 15 shows the event locations determined by the traditional
method with joint anisotropic tomography. Due to the strong hetero-
geneity in the medium, the located events are shifted slightly away
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Figure 16. Same as Fig. 15 except for the extended double-difference
method for the second example.

from the true locations, especially in the vertical direction. As dif-
ferent phases (qP, qSV and SH) are included for location, the radial
distances are in general constrained well (Eisner et al. 2009). Still,
we found the relative locations of the events are poorly determined,
for example, the events on one fracture can be mistakenly located
onto the other fracture, and the spacing between some events is also
resolved with considerable errors.

Fig. 16 shows the location result with the extended double-
difference method with joint anisotropic tomography. Comparing
Fig. 16 with Fig. 15, it can be found that the relative locations of
the events have been improved considerably. For instance, in the
X–Y plot (map view) where the relative locations are sensitive to
both backazimuths and traveltimes, we find including the differ-
ential backazimuth information can improve the relative location
substantially, yielding satisfactory delineation of the parallelism of
the fractures and recovery of the spacing between events. It should
be noted that the events in different clusters are located with vary-
ing accuracy, as the random heterogeneities have diverse influences
on the traveltimes and backazimuth of events at different locations.
The side views also show improvement in relative location with the
extended double-difference method.

Fig. 17 shows the anisotropic tomography result. Note in the
inversion the VTI layer model with constant elastic moduli for each
layer is only an approximation for the randomly perturbed layer
model used in generating the synthetic waveform data. Similar to
the previous example, elastic moduli in different layers and the layer
thicknesses are recovered with varying degrees of closeness to the
reference values.

4 C O N C LU S I O N S

In this research, we extend the double-difference location method
to use both differential arrival times and differential backazimuths
to locate the microseismic events. We also develop an anisotropic
tomography method to determine elastic modulus and layer thick-
ness of the VTI medium using the arrival times of microseismic
events. The extended double-difference location system is combined
together with the anisotropy tomography system to simultaneously

Figure 17. Comparison between true values of elastic moduli and layer
thicknesses and inverted ones by the extended double-difference method.
Red dots indicate the true parameter values and cyan dots indicate the
inverted values. Note in the inversion the VTI layer model with constant
elastic moduli for each layer is only an approximation for the randomly
perturbed layer model used in generating the synthetic data.

locate microseismic events and determine model parameters. The
location improvement from tomography and from double-difference
constraints is complimentary, as the former one improves the abso-
lute locations and the latter one improves the relative locations. The
additional differential backazimuth information is extracted from
available seismic records and thus this method does not require
collecting any new data. We derived analytical sensitivities for elas-
tic modulus and layer thickness for anisotropy tomography without
any weak anisotropy assumption. We also compared our analytical
sensitivities with numerical sensitivities to validate our derivations.
With inaccuracy in traveltimes and backazimuths either from noise
or from model heterogeneities, the velocity structure (elastic mod-
uli and layer thicknesses) can be recovered with varying degrees
of success, depending on the ray coverage. It is shown that mostly
the absolute traveltimes, but not the differential traveltimes, help to
improve the velocity model due to the layer parametrization. From
synthetic tests, it is shown absolute event locations are significantly
biased without considering anisotropy for the layered VTI model.
Synthetic examples show that our new method with the differential
information can produce better relative locations of the microseis-
mic events and, therefore, delineate the fractures more clearly and
resolve the spacing between events with better accuracy. Both char-
acteristics are important in hydraulic fracturing monitoring, as the
former one is critical for understanding the striking of fractures,
while the latter one is critical for understanding pressure prop-
agation from the injection well. The pure analytical calculations
involved in our inversion scheme make this method fast and accu-
rate, and thus it is especially suitable for real time monitoring of the
shale gas/oil production.
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A P P E N D I X A : A P P ROX I M AT I O N O F T H E B A C K A Z I M U T H S E N S I T I V I T Y

In any heterogeneous anisotropic medium, the derivatives in eq. (8) can be approximated with the following finite difference schemes. For
the first derivatives at the receiver location, they are the phase slowness, and can be approximated using second order finite-difference, for
example:

∂T

∂xr
≈ T (xr + �x, yr , zr ; xs, ys, zs) − T (xr − �x, yr , zr ; xs, ys, zs)

2�x
. (A1)

For the second derivatives, they can be approximated, for example, as:

∂
(

∂T
∂xr

)
∂xs

≈ T (xr + �x, yr , zr ; xs + �x, ys, zs) − T (xr + �x, yr , zr ; xs − �x, ys, zs)

4�x2

− T (xr − �x, yr , zr ; xs + �x, ys, zs) − T (xr − �x, yr , zr ; xs − �x, ys, zs)

4�x2
. (A2)

The other second derivatives can also be calculated numerically by adding the finite increment ±�l to different coordinate variables.



12 J. Li et al.

A P P E N D I X B : C A L C U L AT I O N O F T H E D I F F E R E N T I A L B A C K A Z I M U T H

Here we describe a method that can determine the differential backazimuth (�ϕ) from the observed waveforms without the need to solve
the eigenvalue problems. Let us denote the signals from the first event as p1 (tn) and the signals from the second event as p2 (tn), which are
column vectors. Then the observed seismograms in the north and east components are:

n1 (tn) = p1 (tn) sin (ϕ1)

e1 (tn) = p1 (tn) cos (ϕ1)
(B1)

and

n2 (tn) = p2 (tn) sin (ϕ2)

e2 (tn) = p2 (tn) cos (ϕ2)
(B2)

for the first and second events, respectively. Here ϕ1and ϕ2are the averaged backazimuths of the signals in the observation windows.
Then

nT
1 n2 + eT

1 e2 = pT
1 p2 sin (ϕ1) sin (ϕ2) + pT

1 p2 cos (ϕ1) cos (ϕ2) = pT
1 p2 cos (ϕ1 − ϕ2)

nT
1 e2 − eT

1 n2 = pT
1 p2 sin (ϕ1) cos (ϕ2) − pT

1 p2 cos (ϕ1) sin (ϕ2) = pT
1 p2 sin (ϕ1 − ϕ2) .

(B3)

The differential backazimuth angle can be given by

tan (�ϕ) = tan (ϕ1 − ϕ2) = pT
1 p2 sin (ϕ1 − ϕ2)

pT
1 p2 cos (ϕ1 − ϕ2)

= nT
1 e2 − eT

1 n2

nT
1 n2 + eT

1 e2
. (B4)

The derivations above do not assume any similarity between signals p1 (tn) and p2 (tn), that is, they can be of different frequencies and
amplitudes and eq. (B4) is still valid. Nevertheless, windowing around the first arrivals of the seismograms is needed, otherwise the
determined �ϕ does not reflect the differential backazimuth in the first arrivals but rather is an averaged result. Also, eq. (B4) does not require
p1 (tn) and p2 (tn) to be synchronized in theory. But we found the determined differential backazimuths are most accurate when two traces
are first aligned by waveform cross-correlation (performed when determining the differential traveltimes), as pT

1 p2 is maximized and has the
best signal-to-noise ratio when two signals are in phase.

A P P E N D I X C : D E R I VAT I O N O F T H E S E N S I T I V I T I E S W I T H R E S P E C T T O Ci j

To calculate the traveltime along the ray path, we need to calculate the group velocity associated with the ray. For qP, qSV or SH, the group
velocity vg and the phase velocity v are related by

v2
g[�(θ )] = v2 (θ ) +

(
dv

dθ

)2

= v2 (θ ) + 1

4v2

(
dv2

dθ

)2

, (C1)

where the group angle � (θ ) and the phase angle θ differ by �θ :

� (θ ) − θ = �θ (C2)

and �θ can be found by

tan (�θ ) = 1

v

dv

dθ
= 1

2v2

dv2

dθ
. (C3)

The derivative of the phase velocity with respect to the phase angle is given by

∂v2
P,SV

∂θ
= 1

2

∂[C33 + C55 + (C11 − C33) sin2(θ ) ± D(θ )]

∂θ
= (C11 − C33) sin (θ ) cos (θ ) ± 1

4

[
D1 sin (2θ ) + 4D2 sin3 (θ ) cos(θ )

D (θ )

]
, (C4)

where

D1 = 2
[
2 (C13 + C55)2 − (C33 − C55) (C11 + C33 − 2C55)

]
D2 = (C11 + C13 − 2C55)2 − 4 (C13 + C55)2

D = [
(C33 − C55)2 + D1 sin2 (θ ) + D2 sin4 (θ )

] 1
2 . (C5)

And for SH wave

∂v2
SH

∂θ
= C66 sin (2θ ) − C55sin (2θ ) (C6)
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C.1 qP, qSV

The sensitivity of the phase velocity for qP and qSV waves with respect to the density-normalized elastic modulus Ci j is:

∂v2
P,SV

∂Ci j
= 1

2

[
∂ (C33 + C55)

∂Ci j
+ ∂ (C11 − C33)

∂Ci j
sin2 (θ ) + (C11 − C33) sin (2θ )

∂θ

∂Ci j
± ∂ D (θ )

∂Ci j

]
, (C7)

where the plus sign is for qP wave, and the minus sign is for qSV wave. There are two derivatives we need to find, namely ∂θ/∂Ci j and
∂ D (θ ) /∂Ci j . For the first term ∂θ/∂Ci j ,

∂θ

∂Ci j
= ∂

(
θg − �θ

)
∂Ci j

= −∂�θ

∂Ci j
= −

∂atan
(

1
2v2

∂v2

∂θ

)
∂Ci j

= −1

1 +
(

1
2v2

∂v2

∂θ

)2

∂
(

1
2v2

∂v2

∂θ

)
∂Ci j

. (C8)

Here comes the only assumption in our derivation: ∂θg/∂Ci j = 0. The ray stationarity is valid as the ray path (group angle) perturbation is
of higher order to the traveltime perturbation, and is often used in isotropic traveltime tomography (Zhang & Toksoz 1998).

Define Ad = 1/[1 + ( 1
2v2

∂v2

∂θ
)2], ∂θ/∂Ci j can be further simplified as:

∂θ

∂Ci j
= −Ad

∂
(

1
2v2

∂v2

∂θ

)
∂Ci j

= −Ad

⎡⎣− 1

2v4

∂v2

∂θ

∂v2

∂Ci j
+ 1

2v2

∂
(

∂v2

∂θ

)
∂Ci j

⎤⎦ . (C9)

Eq. (C9) is a general expression for qP, qSV and SH waves. The term ∂( ∂v2

∂θ
)/∂Ci j for qP and qSV waves can be derived from eq. (C4):

∂
(

∂v2

∂θ

)
∂Ci j

= ∂ (C11 − C33)

∂Ci j
sin (θ ) cos (θ ) + (C11 − C33) cos (2θ )

∂θ

∂Ci j

±1

4

[
1

D (θ )

(
∂ D1

∂Ci j
sin (2θ ) + 2D1 cos (2θ )

∂θ

∂Ci j
+ 4

∂ D2

∂Ci j
sin3 (θ ) cos (θ ) + 4D2

(
3 sin2 (θ ) cos2 (θ ) − sin4 (θ )

) ∂θ

∂Ci j

)

+ (
D1 sin (2θ ) + 4D2 sin3 (θ ) cos (θ )

) (
− 1

D2 (θ )

)
∂ D (θ )

∂Ci j

]
(C10)

where

∂ D1

∂Ci j
= 2

[
4 (C13 + C55)

∂ (C13 + C55)

∂Ci j
− ∂ (C33 − C55)

∂Ci j
(C11 + C33 − 2C55) − (C33 − C55)

∂ (C11 + C33 − 2C55)

∂Ci j

]
∂ D2

∂Ci j
= 2 (C11 + C33 − 2C55)

∂ (C11 + C33 − 2C55)

∂Ci j
− 8 (C13 + C55)

∂ (C13 + C55)

∂Ci j
. (C11)

And the derivative ∂ D (θ ) /∂Ci j is given by

∂ D (θ )

∂Ci j
= 1

2D (θ )

(
2 (C33 − C55)

∂ (C33 − C55)

∂Ci j
+ ∂ D1

∂Ci j
sin2 (θ ) + D1 sin (2θ )

∂θ

∂Ci j
+ ∂ D2

∂Ci j
sin4 (θ ) + 4D2sin3 (θ ) cos (θ )

∂θ

∂Ci j

)
. (C12)
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Substituting eqs (C7), (C10), (C11) and (C12) into eq. (C9), we obtain an equation containing only one unknown term ∂θ/∂Ci j . Combine
the terms and solve for ∂θ/∂Ci j :{

1 − Ad

4v4

∂v2

∂θ

[
(C11 − C33) sin(2θ ) ± 1

2D(θ )

(
D1 sin(2θ ) + ∂ D2

∂Ci j
sin4(θ ) + 4D2 sin3(θ ) cos(θ )

)]

+ Ad

2v2

[
(C11 − C33) cos(2θ ) ± 1

4

1

D(θ )
(2D1 cos(2θ ) + 4D2(3 sin2(θ ) cos2(θ ) − sin4(θ )))

± 1

4
(D1 sin(2θ ) + 4D2 sin3(θ ) cos(θ ))

(
− 1

2D3(θ )

)
(D1 sin(2θ ) + 4D2 sin3(θ ) cos(θ ))

]}
∂θ

∂Ci j

= Ad

4v4

∂v2

∂θ

[
∂(C33 + C55)

∂Ci j
+ ∂(C11 − C33)

∂Ci j
sin2(θ )

± 1

2D(θ )

(
2(C33 − C55)

∂(C33 − C55)

∂Ci j
+ ∂ D1

∂Ci j
sin2(θ ) + ∂ D2

∂Ci j
sin4(θ )

)]

− Ad

2v2

[
∂(C11 − C33)

∂Ci j
sin(θ ) cos(θ ) ± 1

4D(θ )

(
∂ D1

∂Ci j
sin(2θ ) + 4

∂ D2

∂Ci j
sin3(θ ) cos(θ )

)

± 1

4
(D1 sin(2θ ) + 4D2 sin3(θ ) cos(θ ))

(
− 1

2D3(θ )

) (
2(C33 − C55)

∂(C33 − C55)

∂Ci j
+ ∂ D1

∂Ci j
sin2(θ ) + ∂ D2

∂Ci j
sin4(θ )

)]
. (C13)

After solving for ∂θ/∂Ci j , we can then solve for ∂ D(θ )/∂Ci j with eq. (C12); then with ∂θ/∂Ci j and ∂ D(θ )/∂Ci j , we can solve for ∂v2/∂Ci j

with eq. (C7) and for ∂( ∂v2

∂θ
)/∂Ci j with eq. (C10), respectively. With the latter two terms, we can finally obtain ∂vg/∂Ci j with eq. (15).

C.2 SH wave

The derivation of the SH sensitivity is similar to that of qP and qSV, and we can follow a similar but simpler procedure. For SH wave,

∂v2

∂Ci j
= ∂

(
C55 + (C66 − C55) sin2 (θ )

)
∂Ci j

∂
(

∂v2

∂θ

)
∂Ci j

= ∂ ((C66 − C55) sin (2θ ))

Ci j
. (C14)

Substituting eq. (C14) into eq. (15) for the sensitivity of group velocity:

∂vg

dCi j
= 1

2vg

[
∂

(
C55 + (C66 − C55) sin2 (θ )

)
∂Ci j

(
1 − 1

4v4

(
∂v2

∂θ

)2
)

+ 1

2v2

∂v2

∂θ

∂ ((C66 − C55) sin (2θ ))

Ci j

]
. (C15)

And then into eq. (C9) for the sensitivity of phase angle:

∂θ

∂Ci j
= Ad

[
1

2v4

∂v2

∂θ

(
∂

(
C55 + (C66 − C55) sin2 (θ )

)
∂Ci j

)
− 1

2v2

∂ ((C66 − C55) sin (2θ ))

Ci j

]
. (C16)

For SH wave, we can write explicitly for ∂θ/∂C55 and ∂θ/∂C66:[
1 − Ad

1

2v4

∂v2

∂θ
(C66 − C55) sin (2θ ) + Ad

v2
(C66 − C55) cos (2θ )

]
∂θ

∂C55
= Ad

[
1

2v4

∂v2

∂θ
cos2 (θ ) + 1

v2
sin (θ ) cos (θ )

]
[

1 − Ad
1

2v4

∂v2

∂θ
(C66 − C55) sin (2θ ) + Ad

v2
(C66 − C55) cos (2θ )

]
∂θ

∂C66
= Ad

[
1

2v4

∂v2

∂θ
sin2 (θ ) − 1

v2
sin (θ ) cos (θ )

]
. (C17)

Then following a similar procedure as for qP and qSV waves, we can solve for the sensitivity of SH waves with respect to the elastic
moduli.

A P P E N D I X D : C O N S T R A I N T O P E R AT O R Pc

In some cases, shale gas/oil drilling companies can make core samples of the subsurface structure and determined some of the Thomsen’s
anisotropy parameters by measuring wave velocities at different directions. In our inversion, each Ci j is inverted independently, but their certain
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combinations, which give the Thomsen’s anisotropy parameters, should be kept close to the values determined by the lab measurements.
Therefore, we propose the following linear operators to constrain such combinations in eq. (19):

C11 − C33

2C33
= ε → C11 − (2ε + 1) C33 = 0 (D1)

C13 + 2C55 − C33

C33
≈ δ → C13 + 2C55 − (δ + 1) C33 = 0 (D2)

C66 − C55

2C55
= γ → C66 − (2γ + 1) C55 = 0. (D3)

Note the expression for δ is approximate here as a linear relation between the elastic moduli Ci j and the anisotropic parameters is required.
The anisotropy parameters ε, δ and γ here are constants determined by lab measurements, if available. These additional constraints can also
help to reduce the ill condition and resulting non-uniqueness in the inversion for anisotropy.


